Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kryo-Elektronentomografie ermöglicht ungetrübten Blick in die Zelle

04.03.2016

Wissenschaftler machen erstmals die Kernlamina einer Zelle sichtbar

Durch die Kombination neuester Entwicklungen im Bereich der Kryo-Elektronentomografie haben Wissenschaftler vom Max-Planck-Institut für Biochemie in Martinsried bisher verborgene Strukturen rund um den Zellkern von HeLa-Zellen in dreidimensionalen Bildern sichtbar gemacht.


Durch die Kombination technischer Entwicklungen in der Kryo-Elektronentomografie können verschiedene Bestandteile der Zelle in ihrer natürlichen Umgebung sichtbar gemacht werden. Im Hintergrund sind Bestandteile des Zellkerns zu sehen: DNA (orange) und die Kernlamina (pink). Im Vordergrund Bestandteile des Zellplasmas Mikrotubuli (grün), Aktin (rot), Intermediärfilamente (beige), Ribosomen (gelb, hellblau) und Kernporen (blau).

© MPI für Biochemie

Sie zeigen das erste Mal die Kernlamina, eine drei Nanometer dünne, fadenartige Proteinstruktur, die den Zellkern umgibt. Ohne die Zellen chemisch zu verändern oder zu entwässern, werden die zellulären Bestandteile in ihrer natürlichen Umgebung sichtbar. Erst dadurch kann das Zusammenspiel der funktionellen Bestandteile einer Zelle erkannt und verstanden werden.

Dank neuester Technologien können Wissenschaftler in immer kleinere Welten vordringen. So ist es das Ziel der Arbeitsgruppe um Wolfgang Baumeister, Leiter der Abteilung „Molekulare Strukturbiologie“ am Max-Planck-Institut für Biochemie, die kleinsten zellulären Strukturen in ihrer natürlichen Umgebung sichtbar zu machen. Federführend in der Entwicklung der Kryo-Elektronentomografie, sind die Forscher mittlerweile in der Lage, größere Moleküle wie DNA oder einzelne Proteinkomplexe in dreidimensionalen Bildern aufzunehmen und zu analysieren.

„Eine Zelle besteht zu 90 Prozent aus Wasser. In klassischen elektronenmikroskopischen Bildgebungsverfahren werden die Zellen fixiert, entwässert, angefärbt und so chemisch verändert. Dadurch entstehen Artefakte und der natürliche funktionelle Zusammenhang der einzelnen zellulären Bestandteile geht verloren“, erläutert Julia Mahamid, Erstautorin der Veröffentlichung.

Detaillierter Blick auf kleinste Zellbestandteile

„Innerhalb der letzten fünf Jahre haben sich verschiedene Techniken soweit verbessert, dass wir jetzt das erste Mal die drei Nanometer dünne Kernlamina sehen können“, so Mahamid weiter. Diese Schicht besteht aus dünnen fadenartigen Proteinen und stützt in den Zellen die Struktur des Zellkerns. Auf ihren 3D-Bildern können die Wissenschaftler auch Kernporen, also die Portale vom Zellkern in das Zellplasma sehen, Ribosomen - die Proteinfabriken der Zellen - oder Teile des Zellskelettes, wie Mikrotubuli, Intermediärfilamente und das Zellskelettprotein Aktin.

Für die Kryo-Elektronentomografie werden Zellen schockgefroren. Dadurch gefriert das Wasser in einem glasartigen Zustand, und es entstehen keine Eiskristalle, die die molekularen Strukturen zerstören würden. Ähnlich der Computertomografie in der medizinischen Diagnostik werden zweidimensionale Bilder aus verschiedenen Blickwinkeln aufgenommen, in diesem Fall mit einem Transmissions-Elektronenmikroskop.

Die zelluläre Landschaft wird dann aus den aufgenommenen Bildern am Rechner wieder zu dreidimensionalen Bildern zusammengesetzt. Einen wesentlich erhöhten Kontrast erhalten die Wissenschaftler dabei durch die am Institut kürzlich entwickelte Volta-Phasen-Platte, die jetzt die Einblicke in den dicht gepackten Zellkern ermöglicht.

Für die Transmissions-Elektronenmikroskopie werden sehr dünne Proben benötigt. „Aus den schockgefrorenen, mehreren Mikrometer dicken menschlichen Zellen werden mit Hilfe eines fokussierten Ionenstrahls etwa 200 Nanometer dünne Zellschnitte hergestellt“, erklärt Mahamid. Diese Methode wurde bislang hauptsächlich in der Materialwissenschaft angewandt. Das Verfahren lässt im Gegensatz zu mechanischen Schnitten die molekularen Strukturen im glasartigen Zellschnitt unverändert.

„Das Projekt ist ein Ergebnis aus dem Zusammenspiel vieler Innovationen, die in den letzten Jahren etabliert wurden und beruht auf der gemeinsamen Leistung vieler Wissenschaftler“, erklärt Mahamid. „In Zukunft können viele zelluläre Prozesse auf molekularer Ebene in der natürlichen Umgebung sichtbar gemacht werden.“


Ansprechpartner

Prof. Dr. Wolfgang Baumeister
Max-Planck-Institut für Biochemie, Martinsried

Abteilung Baumeister
Telefon: +49 89 8578-2652

Fax: +49 89 8578-2641

E-Mail: baumeist@biochem.mpg.de


Dr. Christiane Menzfeld
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2824

Fax: +49 89 8578-3777

E-Mail: menzfeld@biochem.mpg.de


Originalpublikation
J. Mahamid, S. Pfeffer, M. Schaffer, E. Villa, R. Danev, L. Kuhn-Cuellar, F. Förster, A. A. Hyman, J. M. Plitzko, W. Baumeister

Visualizing the molecular sociology at the HeLa cell nuclear periphery

Science, Februar 2016 (DOI: 10.1126/science.aad8857)

Prof. Dr. Wolfgang Baumeister | Max-Planck-Institut für Biochemie, Martinsried

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops