Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kryo-Elektronentomografie ermöglicht ungetrübten Blick in die Zelle

04.03.2016

Wissenschaftler machen erstmals die Kernlamina einer Zelle sichtbar

Durch die Kombination neuester Entwicklungen im Bereich der Kryo-Elektronentomografie haben Wissenschaftler vom Max-Planck-Institut für Biochemie in Martinsried bisher verborgene Strukturen rund um den Zellkern von HeLa-Zellen in dreidimensionalen Bildern sichtbar gemacht.


Durch die Kombination technischer Entwicklungen in der Kryo-Elektronentomografie können verschiedene Bestandteile der Zelle in ihrer natürlichen Umgebung sichtbar gemacht werden. Im Hintergrund sind Bestandteile des Zellkerns zu sehen: DNA (orange) und die Kernlamina (pink). Im Vordergrund Bestandteile des Zellplasmas Mikrotubuli (grün), Aktin (rot), Intermediärfilamente (beige), Ribosomen (gelb, hellblau) und Kernporen (blau).

© MPI für Biochemie

Sie zeigen das erste Mal die Kernlamina, eine drei Nanometer dünne, fadenartige Proteinstruktur, die den Zellkern umgibt. Ohne die Zellen chemisch zu verändern oder zu entwässern, werden die zellulären Bestandteile in ihrer natürlichen Umgebung sichtbar. Erst dadurch kann das Zusammenspiel der funktionellen Bestandteile einer Zelle erkannt und verstanden werden.

Dank neuester Technologien können Wissenschaftler in immer kleinere Welten vordringen. So ist es das Ziel der Arbeitsgruppe um Wolfgang Baumeister, Leiter der Abteilung „Molekulare Strukturbiologie“ am Max-Planck-Institut für Biochemie, die kleinsten zellulären Strukturen in ihrer natürlichen Umgebung sichtbar zu machen. Federführend in der Entwicklung der Kryo-Elektronentomografie, sind die Forscher mittlerweile in der Lage, größere Moleküle wie DNA oder einzelne Proteinkomplexe in dreidimensionalen Bildern aufzunehmen und zu analysieren.

„Eine Zelle besteht zu 90 Prozent aus Wasser. In klassischen elektronenmikroskopischen Bildgebungsverfahren werden die Zellen fixiert, entwässert, angefärbt und so chemisch verändert. Dadurch entstehen Artefakte und der natürliche funktionelle Zusammenhang der einzelnen zellulären Bestandteile geht verloren“, erläutert Julia Mahamid, Erstautorin der Veröffentlichung.

Detaillierter Blick auf kleinste Zellbestandteile

„Innerhalb der letzten fünf Jahre haben sich verschiedene Techniken soweit verbessert, dass wir jetzt das erste Mal die drei Nanometer dünne Kernlamina sehen können“, so Mahamid weiter. Diese Schicht besteht aus dünnen fadenartigen Proteinen und stützt in den Zellen die Struktur des Zellkerns. Auf ihren 3D-Bildern können die Wissenschaftler auch Kernporen, also die Portale vom Zellkern in das Zellplasma sehen, Ribosomen - die Proteinfabriken der Zellen - oder Teile des Zellskelettes, wie Mikrotubuli, Intermediärfilamente und das Zellskelettprotein Aktin.

Für die Kryo-Elektronentomografie werden Zellen schockgefroren. Dadurch gefriert das Wasser in einem glasartigen Zustand, und es entstehen keine Eiskristalle, die die molekularen Strukturen zerstören würden. Ähnlich der Computertomografie in der medizinischen Diagnostik werden zweidimensionale Bilder aus verschiedenen Blickwinkeln aufgenommen, in diesem Fall mit einem Transmissions-Elektronenmikroskop.

Die zelluläre Landschaft wird dann aus den aufgenommenen Bildern am Rechner wieder zu dreidimensionalen Bildern zusammengesetzt. Einen wesentlich erhöhten Kontrast erhalten die Wissenschaftler dabei durch die am Institut kürzlich entwickelte Volta-Phasen-Platte, die jetzt die Einblicke in den dicht gepackten Zellkern ermöglicht.

Für die Transmissions-Elektronenmikroskopie werden sehr dünne Proben benötigt. „Aus den schockgefrorenen, mehreren Mikrometer dicken menschlichen Zellen werden mit Hilfe eines fokussierten Ionenstrahls etwa 200 Nanometer dünne Zellschnitte hergestellt“, erklärt Mahamid. Diese Methode wurde bislang hauptsächlich in der Materialwissenschaft angewandt. Das Verfahren lässt im Gegensatz zu mechanischen Schnitten die molekularen Strukturen im glasartigen Zellschnitt unverändert.

„Das Projekt ist ein Ergebnis aus dem Zusammenspiel vieler Innovationen, die in den letzten Jahren etabliert wurden und beruht auf der gemeinsamen Leistung vieler Wissenschaftler“, erklärt Mahamid. „In Zukunft können viele zelluläre Prozesse auf molekularer Ebene in der natürlichen Umgebung sichtbar gemacht werden.“


Ansprechpartner

Prof. Dr. Wolfgang Baumeister
Max-Planck-Institut für Biochemie, Martinsried

Abteilung Baumeister
Telefon: +49 89 8578-2652

Fax: +49 89 8578-2641

E-Mail: baumeist@biochem.mpg.de


Dr. Christiane Menzfeld
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2824

Fax: +49 89 8578-3777

E-Mail: menzfeld@biochem.mpg.de


Originalpublikation
J. Mahamid, S. Pfeffer, M. Schaffer, E. Villa, R. Danev, L. Kuhn-Cuellar, F. Förster, A. A. Hyman, J. M. Plitzko, W. Baumeister

Visualizing the molecular sociology at the HeLa cell nuclear periphery

Science, Februar 2016 (DOI: 10.1126/science.aad8857)

Prof. Dr. Wolfgang Baumeister | Max-Planck-Institut für Biochemie, Martinsried

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie