Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristallstruktur einer kurzlebigen Peroxo-Zwischenstufe aufgeklärt

17.04.2015

Lübecker Biochemiker und Physiker machen dreidimensionale Struktur des Enzyms DOHH sichtbar - Neue Möglichkeit für das maßgeschneiderte Design von chemischen Katalysatoren und therapeutischen Wirkstoffen

Die chemische Oxidation von Kohlenwasserstoffen ist sehr energieaufwendig. So müssen etwa für die Umwandlung des Methans, des Hauptbestandteils von Erdgas, in flüssiges Methanol drastische Reaktionsbedingungen wie hoher Druck und hohe Temperaturen angewendet werden.


Struktur des menschlichen Enzyms DOHH

Han et al.

In der Natur laufen solche Reaktionen viel schonender ab; sie werden häufig durch eisenhaltige Enzyme katalysiert, die molekularen Sauerstoff (O2) aus der Luft aufnehmen, aktivieren, in atomaren Sauerstoff (O) spalten und diesen dann in die Bindung zwischen Kohlenstoff und Wasserstoff des Kohlenwasserstoffmoleküls einfügen.

Es ist von großem Interesse, das aktive Zentrum solcher Enzyme durch chemische Synthese nachzubauen und so einen Katalysator zu gewinnen, der die Oxidationsreaktionen viel schonender und kostengünstiger durchführt als die derzeitigen technischen Verfahren. Leider sind die entsprechenden Zwischenstufen der Sauerstoff-Aktivierung nur sehr kurzlebig; in den meisten Fällen existieren sie nur für ein paar Sekundenbruchteile. Ihre Strukturen sind daher sehr schwer zu untersuchen.

Es gibt allerdings ein Enzym namens Deoxyhypusin-Hydroxylase (DOHH) aus menschlichen Zellen, welches eine ähnliche Oxidationsreaktion einer seltenen Aminosäure katalysiert - in diesem Fall ist die sauerstoff-aktivierende Zwischenstufe über einige Tage stabil.

Prof. Rolf Hilgenfeld und sein Doktorand Zhenggang Han vom Institut für Biochemie der Universität zu Lübeck haben diese sogenannte Peroxo-Zwischenstufe der DOHH nun kristallisiert und ihre dreidimensionale Struktur aufgeklärt, und Prof. Alfred Xaver Trautwein vom Institut für Physik der Universität Lübeck hat die Wechselwirkungen zwischen Sauerstoff und Eisenatomen im Zentrum des Enzyms spektroskopisch untersucht.

Durch diese Arbeit, die in der aktuellen Online-Ausgabe des Fachjournals "Structure" erschienen ist, wurde zum ersten Mal die Struktur einer biologischen Zwischenstufe dieser Art sichtbar gemacht; damit eröffnen sich völlig neue Möglichkeiten für deren Nachahmung durch chemische Synthese.

Neben dieser Rolle als Modell für kurzlebige Zwischenstufen kommt dem Enzym DOHH auch eine wichtige Funktion bei der HIV-Infektion, bei bestimmten Krebsarten und bei Diabetes zu, so dass die neue Kristallstruktur aus Lübeck nun das maßgeschneiderte Entwerfen von Wirkstoffen gegen eine ganze Reihe von Krankheiten ermöglicht.

Publikation:
Zhenggang Han, Naoki Sakai, Lars Böttger, Sebastian Klinke, Joachim Hauber, Alfred Xaver Trautwein & Rolf Hilgenfeld: Crystal Structure of the Peroxo-diiron(III) Intermediate of Deoxyhypusine Hydroxylase, an Oxygenase Involved in Hypusination. Structure, im Druck. DOI: http://dx.doi.org/10.1016/j.str.2015.03.002

Die gedruckte Ausgabe von Structure mit dieser Publikation erscheint am 5. Mai 2015.

Weitere Informationen:

http://dx.doi.org/10.1016/j.str.2015.03.002
http://www.biochem.uni-luebeck.de/

Rüdiger Labahn | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik