Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krisenmanager der Pflanzenabwehr

02.07.2010
Biologen haben einen wichtigen Helfer für eine vollständige Immunantwort bei Pflanzen entdeckt

Pflanzenparasiten, die bereits in eine Zelle eingedrungen sind, werden durch ein Protein in Schach gehalten, das sowohl im Zellkern als auch im Zytoplasma aktiv wird. Im Kern sorgt es dafür, dass die für die Abwehr benötigten Gene abgelesen werden. Im Zytoplasma könnte es den Tod der infizierten Zelle herbeiführen oder dem Zellkern zuarbeiten. (PLoS Pathogens, 2. Juli 2010)


Epidermale Zellen einer Arabidopsis-Linie, deren Immunsystem aktiviert wurde. Die höchste Expression des fluoreszenzmarkierten Proteins EDS1 findet sich im Zytoplasma und im Kern der Zellen. Max-Planck-Institut für Pflanzenzüchtungsforschung

Pflanzen sind nicht bereit, sich einem Eindringling widerstandslos hinzugeben. Auf Widersacher reagieren sie genau wie andere Lebewesen mit einer Immunantwort. Allerdings können sich Pflanzen keinen Fehlalarm leisten, weil jede überflüssige Immunreaktion mit einem erheblichen Stress verbunden ist und das Wachstum beeinträchtigt. Deshalb dosieren Pflanzen ihren Einsatz sehr genau. Wenn sich die Bedrohung allerdings schon in der Pflanzenzelle zeigt, muss schnell und effektiv reagiert werden, damit nicht die gesamte Pflanze Schaden nimmt.

Ein Protein, das dabei offensichtlich eine zentrale Rolle spielt, ist EDS1. Dieses nur mit einem Akronym bezeichnete Eiweiß wird von einem inneren Radar alarmiert. Pflanzen arbeiten bei der Immunabwehr mit einem doppelten Radarsystem, einem auf der Zelloberfläche und einem im Zellinneren. Der äußere Radar besteht aus speziellen Rezeptoren, die wie Häscher nach potentiellen Angreifern suchen. Der innere Radar arbeitet mit Sensoren, die alle wichtigen pflanzlichen Eiweiße bewachen. Vergreift sich der Eindringling an einem dieser Eiweiße, weiß die Zelle, dass sie sofort reagieren muss. Der Notruf geht dann an EDS1, das daraufhin seine Präsenz im Zellkern und im Zytoplasma erhöht und dort als Krisenmanager tätig wird.

Darauf haben jetzt Jane Parker vom Max Planck-Institut für Pflanzenzüchtungsforschung in Köln und ihre Kollegen hingewiesen. Offensichtlich gibt es auch enge Absprachen zwischen beiden Kompartimenten, denn es genügt für eine effektive Immunantwort nicht, wenn EDS1 nur im Zellkern auftaucht, ohne dass es vorher ein Signal des Erregers gegeben hätte. Erarbeitet wurden die Ergebnisse an der Ackerschmalwand (Arabidopsis) als Modellpflanze.

Das Protein vermittelt offensichtlich zwischen dem inneren Radar und der weiteren Immunantwort. „Wir wussten bislang nicht, wie es weitergeht, nachdem der innere Radar einen Notruf abgesetzt hat“, sagt Jane Parker. „Mit EDS1 haben wir jetzt einen wichtigen Vermittler gefunden.“ Nach dem Anspringen des Radars steigt die Konzentration des Proteins im Zellkern an und die Gene für die Abwehrreaktion werden in eine Botenribonukleinsäure umgeschrieben. Die Wissenschaftler haben allerdings bislang noch keinen Hinweis dafür gefunden, dass EDS1 selbst das Ablesen der Gene vorantreibt. Es sieht vielmehr so aus, als ob das Protein alles dafür vorbereitet. Es könnte also sein, dass es die nötigen Proteine einfängt und zu einem Komplex zusammenführt. Es könnte aber auch sein, dass es ein Teil des Komplexes ist, mit dem die DNA in eine Botenribonukleinsäure umgeschrieben wird.

Dass das Protein eine wichtige Rolle bei der pflanzlichen Immunantwort spielt, steht außer Frage. Wird es so verändert, dass es sich selbst wieder aus dem Zellkern wirft, bleibt die Immunantwort schwach. Allerdings ist für die Abwehr auch das EDS1 im Zytoplasma notwendig. Welche Rolle es dort spielt, ist jedoch unklar. Parkers Experimente legen nahe, dass es eine enge Absprache zwischen dem Protein im Zellkern und im Zytoplasma gibt und dass ein ständiges Hin und Her für eine vollständige Immunantwort notwendig ist. Eine Variante, die nicht mehr in den Kern wandern kann, lässt Zellen an der Infektionsstelle absterben. „Es könnte also sein, dass EDS1 im Zytoplasma den programmierten Zelltod auslöst, davon aber abgehalten wird, wenn im Zellkern alles Nötige für eine effektive Immunantwort angelaufen ist“, sagt Parker. „Es könnte aber auch sein, dass EDS1 im Zytoplasma Proteine einsammelt, die anschließend im Zellkern gebraucht werden.“

Die Wissenschaftlerin will als nächstes die Rolle des Proteins in beiden Kompartimenten genauer untersuchen und herausfinden, welche Absprachen für eine effektive Immunantwort getroffen werden müssen. Die Ergebnisse helfen dabei, zu verstehen, wie die Pflanze zu einer angemessenen Immunreaktion kommt, einer, die den Feind beseitigt, aber gleichzeitig ihrem Wachstum nicht schadet.

García AV, Blanvillain-Baufumé S, Huibers RP, Wiermer M, Li G, et al. (2010) Balanced Nuclear and Cytoplasmic Activities of EDS1 Are Required for a Complete Plant Innate Immune Response. PLoS Pathogens 6(7): e1000970. doi:10.1371/journal.ppat.1000970

Ansprechpartner:

Prof. Dr. Jane Parker
Max-Planck-Institut für Pflanzenzüchtungsforschung
Carl von Linné Weg 10
50829 Köln
Tel: +49-221-5062-303
parker@mpiz-koeln.mpg.de

Barbara Abrell, | idw
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Entzündung weckt Schläfer

29.03.2017 | Biowissenschaften Chemie

Mittelstand 4.0-Kompetenz­zentrum Stuttgart gestartet

29.03.2017 | Wirtschaft Finanzen

Energieträger: Biogene Reststoffe effizienter nutzen

29.03.2017 | Ökologie Umwelt- Naturschutz