Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum es eine Kreuzung im Gehirn gibt

10.05.2012
Wissenschaftler erklären Entstehung der Kreuzung von Nervenbahnen im Vorderhirn: Früher Vorfahre der Wirbeltiere hat sich auf die linke Seite gedreht / Veröffentlichung in der Fachzeitschrift "Animal Biology"

Verkehrte Welt: Die linke Gehirnhälfte steuert bei Wirbeltieren, also auch bei Menschen, die rechte Körperseite, die rechte Hälfte steuert die linke Seite. Auch die Sehnerven kreuzen sich auf ihrem Weg von den Augen ins Gehirn im optischen Chiasma. Die Gründe dafür sind unklar – eine Erklärung lautet, dass diese sogenannte kontra-laterale Anordnung im Vorderhirn entstanden ist, weil sie die Sinneswahrnehmung verbessere.


Ein mögliches Entwicklungsszenario: Ein urzeitlicher Fisch hat sich auf die Seite gedreht. Mund und Flossen haben die Bewegung aus Perspektive des Fisches im Uhrzeigersinn kompensiert, Augen und Nasenlöcher entgegengesetzt. Grafik: Marc de Lussanet

Dr. Marc de Lussanet, Biologe und Neurowissenschaftler am Institut für Psychologie der Universität Münster, bezweifelt dies. Gemeinsam mit Prof. Dr. Jan Osse aus Wageningen, Niederlande, liefert er in der Fachzeitschrift Animal Biology eine andere Erklärung. Demnach hat sich ein früher Vorfahre der Wirbeltiere vor etwa einer halben Milliarde Jahre auf die linke Seite gedreht.

Der frühe Vorfahre – ein urzeitlicher Fisch – habe sich vor mindestens 450 Millionen Jahren um 90 Grad gedreht, so das deutsch-niederländische Forscherteam. Dafür entwickelten die beiden Wissenschaftler verschiedene Szenarien. Beispielsweise könnte die Drehung es dem Tier ermöglicht haben, sich wie eine Flunder auf dem Meeresboden zu verstecken. Jedoch wäre durch eine bloße Drehung die bilateral-symmetrische Anordnung der Organe verloren gegangen, bei der die Augen links und rechts am Kopf liegen und die Flossen rechts und links an beiden Seiten des Körpers entspringen.

Um diese symmetrische Anordnung wieder herzustellen, so die Annahme der beiden Forscher, verschoben sich im Laufe der Evolution einzelne Körperteile, zum Teil gegen den Uhrzeigersinn, zum Teil im Uhrzeigersinn. Augen, Nasenlöcher und das Vorderhirn verschoben sich demnach in Richtung der ursprünglichen Drehung, weiter schwanzwärts gelegene Regionen des Gehirns und des Körpers genau entgegensetzt. So entstanden zum Teil Kreuzungen der Nervenbahnen zwischen den Körperregionen, beispielsweise entstand das optische Chiasma – die Kreuzung der Sehnerven. Die Wissenschaftler untermauern ihre Hypothese unter anderem mit Beobachtungen aus der Embryonalentwicklung bei Zebrafischen und Hühnern. In den frühesten Embryonalstadien finden asymmetrische zelluläre Bewegungen statt, für die es bislang keine Erklärung gab. Die neue Arbeit zeigt, dass diese Zellbewegungen tatsächlich genau so verlaufen, wie man es bei einer Anpassung an die Drehung auch erwarten würde.

Eine bilateral-symmetrische Anordnung von Sinnesorganen und Extremitäten bietet Tieren einen evolutionären Vorteil. Beispielsweise kann es für einen Fisch erforderlich sein, rechts und links Steuerflossen zu haben. Daher wurde diese Anordnung trotz der Drehung auf die Seite beibehalten, so das Forscherteam. Der evolutionäre Vorteil gelte aber nicht unbedingt für die inneren Organe. Das Herz und der Magen-Darm-Trakt mussten sich daher nicht "zurückdrehen" – eine Erklärung dafür, weshalb das Herz nach wie vor links liegt.

"Wir liefern erstmals eine schlüssige Erklärung für die Vielzahl der gekreuzten Nervenverbindungen im Vorderhirn und die Tatsache, dass diese Kreuzungen bei Wirbeltieren so verbreitet sind", sagt Marc de Lussanet. "Und zwar im Gegensatz zu dem, was die alte Theorie besagt, ohne jegliche Verbesserungen der Wahrnehmung oder der Handlungssteuerung."

Dr. Marc de Lussanet ist Mitglied des "Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience" (OCC). Das OCC ist ein Forschungszentrum der Westfälischen Wilhelms-Universität Münster, das von Wissenschaftlern aus Medizin, Biologie und Psychologie getragen wird. Die Forscher bearbeiten interdisziplinär aktuelle Fragestellungen aus den Verhaltensneurowissenschaften mit Methoden der modernen Bildgebung, der molekularen Genetik und der Neurophysiologie.

Originalliteratur:

Marc H. E. de Lussanet and Jan W. M. Osse (2012): An ancestral axial twist explains the contralateral forebrain and the optic chiasm in vertebrates. Animal Biology 62 (2), 193-216; DOI: 10.1163/157075611X617102

Dr. Christina Heimken | idw
Weitere Informationen:
http://www.uni-muenster.de
http://booksandjournals.brillonline.com/content/10.1163/157075611x617102
http://wwwpsy.uni-muenster.de/Psychologie.inst2/AELappe/personen/deLussanet.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen