Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebstherapie mit körpereigenem Protein: Leipziger Forschungsteam eröffnet Alternativen zur Chemo

18.03.2010
Nach etlichen Jahren intensivster Zusammenarbeit haben Wissenschaftler der Universität Leipzig und des Fraunhofer-Institutes für Zelltherapie und Immunologie IZI die Funktionsweise eines körpereigenen Blutproteins bei einem der gefährlichsten Gehirntumore entschlüsselt.

Diagnose Krebs versetzt Betroffene wie Angehörige in Angst und Schrecken. 13 Prozent aller Sterbefälle sind auf Krebs zurückzuführen – fast jeder vierte Deutsche ist im Laufe seines Lebens mit dieser Nachricht konfrontiert. Unvorhersagbare Therapieerfolge und ein Konglomerat möglicher Nebenwirkungen tragen zur Verunsicherung bei.

Dabei unterscheiden Wissenschaftler zwischen den gutartigen, sich nicht ausbreitenden und nicht weiterwachsenden, Krebsarten und den sogenannten malignen Geschwüren, die unkontrolliert wachsen, sich im menschlichen Körper ausbreiten beziehungsweise metastasieren und schnellstmöglich therapiert werden müssen.

Das Augenmerk des 10-köpfigen Leipziger Forschungsteams liegt auf der Beeinflussung des malignen Zellwachstums der Gliazellen. Diese bilden das Stützzellengewebe, in welchem die Nervenzellen des Gehirns eingebettet sind. Das entartete Wachstum der Gliazellen charakterisiert einen der bösartigsten Gehirntumore, da es unter anderem mit einem exzessiven und gefährlichen Wachstum der Blutgefäße und einer Penetration ins Nervenzellgewebe einhergeht.

Beeinflusst wird das invasive Zellwachstum durch die Gabe eines körpereigenen, aus dem menschlichen Blut gewonnenen, Proteins namens α2-Macroglobulin. Dieses Protein kommt in zwei unterschiedlichen Formen im Blut vor, von denen nur das sogenannte transformierte Protein die Hemmung von Tumorzellen bewirkt. Dieses dockt an einem spezifischen Rezeptor auf den Zelloberflächen an und hemmt dadurch den Wnt/ß-catenin Signalpfad, der für die Aktivierung tumorfördernder Gene im Zellkern verantwortlich gemacht wird. Die Proteine des Wnt- Signalwegs sind daher wichtige Zielscheiben für eine Krebsprävention und -therapie geworden.

Tausende Substanzen bzw. chemische Verbindungen sind bisher mehr oder weniger erfolgreich in diesem Zusammenhang getestet worden. »Wir konnten zum ersten Mal zeigen, dass ein körpereigenes Protein im menschlichen Blut existiert, das diese Funktion erfüllt«, so Professor Birkenmeier, Institut für Biochemie in Leipzig (Gerd.Birkenmeier@medizin.uni-leipzig.de) und der entscheidende Kopf des Projektes.

Vorteil dieser Entdeckung ist ein weitestgehend nebenwirkungsfreier therapeutischer Einsatz, da körpereigene Mechanismen simuliert und somit keine toxikologischen Reaktionen erwartet werden. Universität und Fraunhofer-Institut IZI streben nunmehr eine Zusammenarbeit mit pharmazeutischen Unternehmen an, um ein entsprechendes Medikament zu entwickeln. Birkenmeier: »Trotz des vielversprechenden Forschungsstandes wissen wir sehr wohl, dass noch eine Vielzahl von Studien vor uns liegt, bevor mit einer Markteinführung eines Medikamentes zu rechnen ist.«

Die Fraunhofer-Gesellschaft ist die führende Organisation für angewandte Forschung in Europa. Unter ihrem Dach arbeiten 59 Institute an über 40 Standorten in ganz Deutschland. Rund 17 000 Mitarbeiterinnen und Mitarbeiter erzielen das jährliche Forschungsvolumen von 1,5 Mrd Euro. Davon erwirtschaftet die Fraunhofer-Gesellschaft rund zwei Drittel aus Aufträgen der Industrie und öffentlich finanzierten Forschungsprojekten. Die internationale Zusammenarbeit wird durch Niederlassungen in Europa, den USA und Asien gefördert.

Das Fraunhofer-Institut für Zelltherapie und Immunologie IZI ist Mitglied des Fraunhofer-Verbund Life Science. Ziel des Instituts ist es, spezielle Problemlösungen an den Schnittstellen von Medizin, Biowissenschaften und Ingenieurswissenschaften für Partner aus der medizinorientierten Industrie und Wirtschaft zu finden. Kernkompetenzen liegen dabei in der regenerativen Medizin, d.h. bei zelltherapeutischen Ansätzen zur Wiederherstellung funktionsgestörter Gewebe und Organe bis hin zum biologischen Ersatz durch in vitro gezüchtete Gewebe (Tissue Engineering). Damit die Gewebe ohne Probleme anwachsen können, müssen zelluläre und immunologische Abwehr- und Kontrollmechanismen erfasst und in die Verfahrens- und Produktentwicklung integriert werden. Um diese Kernkompetenzen herum ergibt sich eine Vielzahl von Aufgaben für neue Produkte und Verfahren. Das Institut ist besonders kliniknah orientiert und übernimmt Qualitätsprüfungen, GMP-Herstellung von klinischen Prüfmustern und klinische Studien im Auftrag. Darüber hinaus unterstützt es die Erlangung von Herstellungsgenehmigungen und Zulassungen.

Dr. Wilhelm Gerdes | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.izi.fraunhofer.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie