Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebsforschung - Wie Zellen den Eisentod sterben

15.11.2016

Die Ferroptose bezeichnet eine erst vor kurzem entdeckte Form des Zelltods, die in weiten Teilen noch nicht verstanden ist. Wissenschaftler am Helmholtz Zentrum München stellen nun in zwei Publikationen in ‚Nature Chemical Biology‘ ein zentrales Enzym vor, welches das tödliche Signal erst möglich macht. Die Erkenntnisse könnten auch in der Forschung zu Krebs und neurodegenerativen Erkrankungen Impulse setzen.

Wie der Name schon vermuten lässt, handelt es sich bei der 2012 entdeckten Ferroptose um den organisierten Zerfall von Zellen (griechisch ptosis: der Fall), bei dem zelluläres Eisen eine wichtige Rolle spielt (lateinisch ferrum).


Eine ferroptotische Zelle

Quelle: Helmholtz Zentrum München

„Die einzelnen Mechanismen dieses Zelltodes kristallisieren sich erst langsam heraus und unsere Ergebnisse sind ein wichtiger Beitrag zum Verständnis der Ferroptose“, so Dr. Marcus Conrad, Leiter der Studie und Kopf einer Arbeitsgruppe des Instituts für Entwicklungsgenetik am Helmholtz Zentrum München.

Zusammen mit seinem Team und Kollegen von der Universität Pittsburgh konnte er zeigen, dass das Fettsäurestoffwechsel-Enzym ACSL4* eine zentrale Rolle in der Ferroptose spielt. Denn um den tödlichen Mechanismus auszulösen, muss in der Zelle eine bestimmte Menge an oxidierten Fettmolekülen in der Zellmembran vorliegen.

„ACSL4 stellt diese Ausgangsstoffe für das tödliche Lipidsignal bereit und trägt dazu bei, sie in Form von langen ungesättigten Fettsäuren in den Zellmembranen einzulagern“, so Doktorand Sebastian Doll, Erstautor einer der beiden Arbeiten. „Bislang ging man davon aus, dass die Eisen-abhängige Lipidoxidation zufällig auftritt, allerdings zeigen unsere Daten, dass ACSL4 wesentlich zur Entstehung von oxidierten Lipidsignalen bei der Ferroptose beiträgt.“

Anwendung bei Krebs oder neurodegenerativen Erkrankungen denkbar

Obwohl der Begriff Zelltod zunächst einmal nicht gerade gesundheitsförderlich klingt, hat sich speziell in der Krebsforschung gezeigt, dass die kontrollierte Vernichtung von irrläufigen Zellen lebenswichtig für den menschlichen Körper ist. Dementsprechend untersuchten die Wissenschaftler die Rolle von ACSL4 in diesem Zusammenhang: Sie zeigten, dass Zellen, die kein ACSL4 herstellen können, äußerst resistent gegenüber Ferroptose sind und dass solche, die das Enzym exprimieren, sehr empfindlich auf die Auslösung von Ferroptose reagieren.

Diese Ergebnisse bestätigten sich auch in weiteren Experimenten an dreifach negativen Brustkrebszellen**. „Das ist insofern interessant, da das Vorhandensein von ACSL4 darüber entscheidet, ob Zellen in Ferroptose gehen können oder nicht“, erklärt Dr. José Pedro Friedmann Angeli, der ebenfalls an beiden Studien beteiligt war. Das Molekül sei daher bei der Stratifizierung von Patienten als Biomarker denkbar.

Und auch einen ersten molekularen Eingriff in die Signalkette konnten die Forscher schon erreichen: Durch Behandlung mit einer Wirkstoffklasse, die eigentlich aus der Diabetestherapie bekannt war (Thiazolidinedione), ließ sich die Ferroptose im Modellversuch verlangsamen.

„Mit unserer neuen Erkenntnis, dass das ACSL4-Enzym wesentlich zu dem Zelltodprozess beiträgt, eröffnen sich völlig neue Therapieansätze zur Hemmung der Ferroptose bei degenerativen Erkrankungen bzw. zu deren Herbeiführung bei bestimmten Tumorerkrankungen“, blickt Studienleiter Conrad voraus. Gerade Tumore, die ansonsten nur schwer mit Standard-Chemotherapeutika zu behandeln seien, könnten sich für eine Ferroptosetherapie eignen, so die Forscher.

Weitere Informationen

*Der Name bezeichnet eine Abkürzung für ein Molekül des Fettsäurestoffwechsels: Acyl-CoA synthetase long-chain family member 4.

** Diese Zellen reagieren nur schwach auf Standardchemotherapeutika – scheinen aber stark auf Ferroptose anzusprechen, wenn ACSL4 vorhanden ist.

Hintergrund:
Bisher ist die Ferroptose noch unvollständig verstanden, aber die Wichtigkeit des zellulären Suizids hat sich beispielsweise durch die weitaus besser erforschte Apoptose bereits eindrucksvoll bestätigt. Zudem scheint die Ferroptose auch eine Rolle bei Entzündungen oder beim Überleben unter starkem Oxidationsstress (etwa in Nerven) zu spielen. Bislang waren nur wenige essenzielle Moleküle, wie beispielsweise die Glutathionperoxidase 4 (GPX4), bekannt, die am Ferroptoseprozess beteiligt sind.

Original-Publikationen:

Doll, S. et al. (2016): Acsl4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, doi: 10.1038/nchembio.2239
http://www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.2239.html

Kagan, VE. et al. (2016): Oxidized Arachidonic and Adrenic PEs Navigate Cells to Ferroptosis. Nature Chemical Biology, doi: 10.1038/nchembio.2238
http://www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.2238.html

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Durch eine steigende Lebenserwartung nehmen sowohl altersbedingte, als auch soziologische und umweltbedingte Einflüsse auf die Gene zu. Diese Veränderungen des genetischen Materials untersucht das Institut für Entwicklungsgenetik (IDG). Im Forschungsbereich Mouse Genetics werden genetische Tiermodelle zur Erforschung verschiedener Erkrankungen entwickelt. Diese Modelle werden im Disease Modelling analysiert, um Genfunktionen und Zellprozesse zu identifizieren und den Einfluss von Umwelt und Alterungsprozessen zu bewerten. Ein Schwerpunkt liegt dabei in der Untersuchung neurologischer und psychiatrischer Krankheiten. http://www.helmholtz-muenchen.de/idg

Am Institut für Humangenetik (IHG) stehen die Identifizierung und funktionelle Charakterisierung von Genen, die Krankheiten verursachen, im Mittelpunkt der Forschung. Dabei werden Genmutationen, Genvarianten und die Gen-assoziierten Signalwege untersucht. Inhaltliche Schwerpunkte bilden Endokrinopathien, Herzrhythmusstörungen, neurologische Störungen sowie Mitochondropathien. Durch die Kenntnis krankheitsverursachender Genvarianten lassen sich Konzepte für neue Therapieansätze entwickeln. http://www.helmholtz-muenchen.de/ihg

Ziel der Forschung des Instituts für Experimentelle Genetik (IEG) ist, Ursachen und Entstehung menschlicher Erkrankungen zu verstehen. Durch seine leitende Funktion in interdisziplinären und internationalen Konsortien hat das IEG eine weltweit führende Position in der systemischen Untersuchung von Mausmodellen für Krankheiten des Menschen und der Aufklärung von beteiligten Genen. Schwerpunkt bilden dabei Stoffwechselerkrankungen wie Diabetes. Das IEG ist Gründer der Deutschen Mausklinik (GMC) und leitet das Europäische Maus Mutanten Archiv (EMMA). Zudem koordiniert das IEG die europäische Forschungsinfrastruktur Infrafrontier (ESFRI). Das IEG ist Teil des Helmholtz Diabetes Center (HDC). Dem IEG gehört die Abteilung Genomanalysezentrum (GAC) an, die die Entwicklung komplexer Krankheiten und den Umwelteinfluss bei ihrer Entstehung untersucht. http://www.helmholtz-muenchen.de/ieg

Das Institut für Pathologie (PATH) untersucht mikroskopische und molekulare Gewebestrukturen, die an der Entstehung und Progression von Erkrankungen beteiligt sind. Die Identifizierung und Charakterisierung molekularer Mechanismen und Signalwege bieten die Grundlage, um das Zusammenspiel von Genen und Umwelt besser zu verstehen und Ansatzpunkte für neue therapeutische Interventionen zu entdecken. PATH arbeitet eng mit dem Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München zusammen, wodurch sowohl Grundlagenforschung als auch angewandte klinische Studien ermöglicht werden. http://www.helmholtz-muenchen.de/path

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner:
Dr. Marcus Conrad, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Entwicklungsgenetik, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 4608 - E-Mail: marcus.conrad@helmholtz-muenchen.de

Verwandte Artikel:

Der Faktor zum Überleben
http://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/2016/pressemitteilung/article/32771/index.html

Regulierter nekrotischer Zelltod: Neue Ansätze der Pharmakotherapie
http://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/2016/pressemitteilung/article/34234/index.html

Weitere Informationen:

http://www.helmholtz-muenchen.de/presse-medien/index.html - weitere Meldungen des Helmholtz Zentrums München

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics