Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebsforschung: Neuer Therapieansatz

18.11.2011
Deutsche Krebshilfe fördert Gemeinschaftsprojekt der RUB und Uni Wuppertal / Wissenschaftler wollen mutierte Proteine unschädlich machen

Mutierte Proteine ausschalten und so bösartige Tumore bekämpfen – das ist das Ziel des neuen Gemeinschaftsprojektes von Wuppertaler und Bochumer Forschern. Zu diesem Zweck kooperiert die RUB-Arbeitsgruppe Biomolekulare NMR-Spektroskopie von Prof. Dr. Raphael Stoll mit der Wuppertaler Arbeitsgruppe Bioorganische Chemie unter Leitung von Prof. Dr. Jürgen Scherkenbeck. Die Deutsche Krebshilfe fördert das Vorhaben zwei Jahre lang mit 200.000 Euro. „Wir sind davon überzeugt, dass dieses Projekt enorm von der interdisziplinären Zusammenarbeit profitiert“, sagt Stoll.


Typisches Strukturmotiv der Ras-Proteine. Verbreitert dargestellt sind vor allem die physiologisch wichtigen sogenannten „switch I“- und „switch II“-Regionen des Proteins.
Abbildung: Raphael Stoll

Wenn Proteine immer eingeschaltet sind

Allein in Deutschland sterben jedes Jahr mehr als 200.000 Menschen an Krebs; Tendenz steigend. Bösartige Tumore entstehen, wenn Zellen sich unkontrolliert teilen. An diesem hochkomplexen Geschehen sind zahlreiche Proteine beteiligt, die miteinander wechselwirken. Die so genannten Ras-Proteine arbeiten wie molekulare Schalter. Steht der Schalter auf „ein“, leitet Ras Signale von Rezeptoren in der Zellmembran zu Proteinen im Inneren der Zelle. Das kann dazu führen, dass die Zelle wächst oder sich vermehrt. Verschiedene Mutationen bewirken, dass die Ras-Proteine ständig eingeschaltet sind. So senden sie permanent Wachstumssignale, wodurch die Zellen entarten und Krebs entsteht. In Pankreas-Tumoren sind bis zu 90 % eines bestimmten Ras-Proteins mutiert.

Unkontrolliertes Zellwachstum bremsen

Ras-Proteine funktionieren nur, wenn sie in die Zellmembran eingebaut sind. Hierfür ist ein spezieller Teil des Proteins verantwortlich, der von einem bestimmten Enzym (Farnesyltransferase) an Ras angeheftet wird. Die Bochumer und Wuppertaler Forscher arbeiten daran, kleine Rezeptormoleküle herzustellen, die sich an Ras anlagern und so die Stelle blockieren, an der normalerweise der Membran-Anker angefügt wird. Ohne Anker lagert Ras sich nicht in die Membran ein und bleibt ausgeschaltet; das übermäßige Zellwachstum wird gebremst. „Wenn wir Erfolg haben, können wir so ein unbedenkliches Antitumor-Mittel mit großer klinischer Relevanz herstellen“, resümiert Scherkenbeck.

Weitere Informationen

Prof. Dr. Raphael Stoll, Fakultät für Chemie und Biochemie der Ruhr-Universität, Biomolekulare NMR, NC 7/175, 44780 Bochum, Tel.: 0234/32-25466

raphael.stoll@rub.de

Prof. Dr. Jürgen Scherkenbeck, Bergische Universität Wuppertal, Fachbereich C, Geb. G12-21, Gaußstraße 20, 42119 Wuppertal, Tel.: 0202/439-2654

scherkenbeck@uni-wuppertal.de

Angeklickt

Arbeitsgruppe Biomolekulare NMR
http://www.ruhr-uni-bochum.de/bionmr/
Redaktion
Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/bionmr/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten