Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebse produzieren Superkleber der Meere

02.08.2010
Forschungsprojekt zum Einsatz des Klebstoffs von Rankenfüßern für Medizin und Industrie

Ist ihr das Besetzen von Schiffen, Felsen oder Bojen zu langweilig, lässt sich die gestielte Meereichel, Dosima fascicularis, an selbstgebauten Flößen durch die Ozeane treiben. Der marine Krebs aus der Familie der Rankenfüßer verwendet klebrige Substanzen zur Haftung – die in synthetischer Form das Interesse von Medizin, Industrie und Technik wecken. Waltraud Klepal von der Fakultät für Lebenswissenschaften der Universität Wien untersucht in einem österreichisch-deutsch-irischen Forschungsprojekt Entstehung und Zusammensetzung des Klebstoffs dieser Meerestiere.

Rankenfüßer sind die Seefahrer unter den Meerestieren: Die Krebse setzen sich gerne auf Schiffsrümpfen fest und verlangsamen dadurch die Fahrtgeschwindigkeit. Spät wurde der mögliche Nutzen der Tiere entdeckt; der natürliche Superkleber, mit dem sich die Krebse an nahezu allen Flächen festheften können. Ursprünglich erkannt wurde er von der Zahnmedizin, vermutlich daher wird der Klebstoff auch "Zement" genannt. "Mittlerweile ist der Bereich möglicher Anwendungen und das Interesse der Industrie weiter gewachsen", erklärt Waltraud Klepal, Professorin der Core Facility für Cell Imaging und Ultrastrukturforschung an der Fakultät für Lebenswissenschaften der Universität Wien. Mit ihrem Team untersucht die Biologin im Rahmen des FWF-Projekts (Fonds zur Förderung der wissenschaftlichen Forschung) "Charakterisierung des Zements von Dosima fascicularis" die Entstehung und Zusammensetzung des Klebstoffs der gestielten Meereichel aus der Familie der Rankenfüßer.

Wasserfest

Um zu verstehen, wie diese Krebsart den Zement produziert, durchleuchtet Klepal die Tiere bis auf die kleinste Zelle: "Mit dem Elektronenmikroskop untersuchen wir die Zementdrüsen, das ausleitende Gangsystem und den Zement innerhalb und außerhalb der Zelle." Mit Semidünnschnitten von einem halben bis einem Mikrometer Dicke sowie Ultradünnschnitten von nur 60 bis 70 Nanometern erforscht das Team die Zementzelle im Detail. "Der weiche Zement erhärtet, sobald er nach außen gelangt – ähnlich einem Superkleber", erklärt Projektmitarbeiterin Vanessa Zheden. Nicht viele Klebstoffe sind bekannt, die im Wasser erhärten. Denn meist ist es problematisch, feuchte Oberflächen zu verkleben. Wodurch der Zement aushärtet, ist deshalb eine zentrale Frage des Projekts. "Handelt es sich um einen Zwei- oder Ein-Komponentenkleber, einen Reaktionsklebstoff – der eine chemische Reaktion zur Aushärtung benötigt –, eine Dispersion oder einen physikalisch abbindenden Klebstoff", erläutert Klepal die verschiedenen Möglichkeiten.

Mobile Krebse

Mit dem Sekret kann sich Dosima fascicularis aber nicht nur an Felsen, Schiffen oder Bojen – und somit an verschiedenen Oberflächenstrukturen – festheften. Sie hat im Laufe der Evolution gelernt, den Zement als Floß zu verwenden und sich damit im Wasser treiben zu lassen. "Das ist biologisch gesehen großartig", freut sich Klepal: "Die eigentlich festsitzenden Tiere, die sonst auf Wasser-bewegung angewiesen sind um sich ernähren und fortpflanzen zu können, werden auf diese Weise mobil." Möglich macht dies die Struktur des Zements, dessen Inneres mit kleinen Blasen gefüllt ist.

Aus der Natur in die Industrie

Sobald die Zusammensetzung des natürlichen Klebstoffs bekannt ist, kann er auf synthetischem Weg hergestellt werden. Neben der Zahnmedizin ist der Zement auch für die Allgemeinmedizin, die Chirurgie sowie die Tiermedizin interessant. "Der Klebstoff könnte bei der Heilung von Schnittwunden die Nähte oder bei Knochenbrüchen Nägel und Schrauben ersetzen", erklärt Klepal. Da der Klebstoff besonders widerstandsfähig, elastisch und komprimierbar ist, könnte er auch in Industrie und Technik – unter anderem für Unterwasserkonstruktionen – Anwendung finden.

Kooperation zwischen Österreich, Deutschland und Irland

Während sich die ForscherInnen in Wien um die Morphologie – Struktur und Form – der Tiere und deren Klebstoff kümmern, untersuchen die KooperationspartnerInnen am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung in Bremen den biochemischen Aufbau des Zements. Die Histochemie (Identifikation von chemischen Gruppen und Komponenten) wird an der National University of Ireland durchgeführt. Das Forschungsprojekt ist bis 2012 anberaumt.

Webseite Core Facility für Cell Imaging und Ultrastrukturforschung http://www.univie.ac.at/cius

Kontakt
Ao. Univ.-Prof. i.R. Dr. Waltraud Klepal
Core Facility für Cell Imaging und Ultrastrukturforschung
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-544 20
waltraud.klepal@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | idw
Weitere Informationen:
http://public.univie.ac.at
http://www.univie.ac.at
http://www.univie.ac.at/cius

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops