Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebse mit Biss

05.07.2012
Kieler Zoologen sammeln neue Erkenntnisse über die komplexen Mundwerkzeuge von Ruderfußkrebsen
Kieselalgen sind kleine einzellige Algen, die in vielen Meeresgebieten einen großen Teil der Biomasse des Phytoplanktons bilden und deshalb eine wichtige Rolle in den marinen Nahrungsnetzen spielen. Viele ihrer siliciumdioxidhaltigen Schalen besitzen eine beeindruckende Stabilität, die sich nach Ansicht führender Fachleute im Laufe der Evolution als Fraßschutz entwickelt hat. Trotzdem sind Ruderfußkrebse, die zu den häufigsten Fressfeinden der Kieselalgen gehören, dazu in der Lage, diese stabilen Schalen mit speziellen Mundwerkzeugstrukturen, den Kauladen ihrer Mandibeln, zu zerbrechen.

Dr. Jan Michels und Professor Stanislav Gorb vom Zoologischen Institut der Christian-Albrechts-Universität zu Kiel (CAU) konnten jetzt in Kooperation mit Dr. Jürgen Vogt vom Institut für Experimentelle Physik II der Universität Leipzig zeigen, dass der Aufbau der Kauladen deutlich komplexer ist, als es ursprünglich angenommen worden war. Ihre Ergebnisse sind nun im Online-Journal Scientific Reports der renommierten Nature Publishing Group veröffentlicht worden.

Bei zahlreichen Arten des Ruderfußkrebses besitzen die Kauladen zahnartige Strukturen mit Einlagerungen aus Siliziumdioxid, dem Hauptbestandteil der Kieselalgenschalen. Die Eigenschaften solcher Kauladen und der Kieselalgenschalen haben sich wahrscheinlich im Zuge einer Ko-Evolution entwickelt. Mit hoch auflösender Mikroskopietechnik untersuchten die Forscher die Morphologie und die Materialzusammensetzung der Kauladen des Ruderfußkrebses Centropages hamatus. Diese Art kommt im Nordatlantik und in angrenzenden Meeresgebieten vor und ist unter anderem in der südlichen Nordsee relativ zahlreich zu finden. Zusätzlich wurde die Elementarzusammensetzung der Kauladen an der Leipziger Hochenergie-Ionensonde LIPSION mit Hilfe der partikelinduzierten Röntgenemission bestimmt.

Die Analysen erbrachten überraschende Ergebnisse: Verschiedene Strukturen der Kauladen enthalten das Protein Resilin, ein weiches und sehr elastisches Material. Direkt unter den harten und steifen siliziumdioxidhaltigen Spitzen der zahnartigen Strukturen befinden sich besonders hohe Resilin-Konzentrationen, die eine Art weicher Lagerung der harten Spitzen bilden. Die Wissenschaftler vermuten, dass ein solches System zu große mechanische Belastungen, die beim Zerkleinern von besonders stabilen Nahrungspartikeln entstehen können, durch ein Nachgeben der Spitzen abfedern und dadurch das Risiko von Beschädigungen wie Rissen und Brüchen reduzieren kann.

Die Erkenntnisse liefern einen wichtigen Beitrag zum Verständnis der Funktion der Ruderfußkrebsmundwerkzeuge und der komplexen mechanischen Wechselwirkungen zwischen diesen Mundwerkzeugen und den Nahrungspartikeln.

Originalveröffentlichung:
Jan Michels, Jürgen Vogt, Stanislav N. Gorb: Tools for crushing diatoms – opal teeth in copepods feature a rubber-like bearing composed of resilin. Scientific Reports 2, Article number: 465, doi:10.1038/srep00465

Fünf Fotos stehen zum Download bereit:

http://www.uni-kiel.de/download/pm/2012/2012-200-1.jpg
Bildunterschrift: Unterseite des Vorderendes eines weiblichen Ruderfußkrebses der Art Centropages hamatus. Das Bild wurde mit der konfokalen Laserrastermikroskopie (CLSM) erzeugt und zeigt unter anderem die Mundöffnungsregion und einen Teil der Mundwerkzeuge.
Copyright/Foto: Jan Michels

http://www.uni-kiel.de/download/pm/2012/2012-200-2.jpg
Bildunterschrift: Rasterelektronenmikroskopische Aufnahme einer Kaulade eines weiblichen Ruderfußkrebses der Art Centropages hamatus.
Copyright/Foto: Jan Michels

http://www.uni-kiel.de/download/pm/2012/2012-200-3.jpg
Bildunterschrift: CLSM-Aufnahme einer Kaulade eines weiblichen Ruderfußkrebses der Art Centropages hamatus. Das Bild zeigt die chitinhaltigen Teile (rot) des Exoskeletts und Strukturen mit hohen Konzentrationen des Proteins Resilin (blau).
Copyright/Foto: Jan Michels

http://www.uni-kiel.de/download/pm/2012/2012-200-4.jpg
Bildunterschrift: CLSM-Aufnahme einer Kaulade eines weiblichen Ruderfußkrebses der Art Centropages hamatus. Das Bild zeigt die chitinhaltigen Teile (orange) des Exoskeletts, Strukturen mit hohen Konzentrationen des Proteins Resilin (blau) und siliciumdioxidhaltige Strukturen (grün).
Copyright/Foto: Jan Michels

http://www.uni-kiel.de/download/pm/2012/2012-200-5.jpg
Bildunterschrift: Optischer Schnitt (CLSM-Aufnahme) durch eine zahnartige Struktur einer Kaulade eines weiblichen Ruderfußkrebses der Art Centropages hamatus. Das Bild zeigt deutlich, dass sich auf dem chitinhaltigen Sockel (rot) eine Kappe aus Material mit hohen Konzentrationen des Proteins Resilin (blau) befindet, die wiederum bedeckt wird von einer Kappe aus siliciumdioxidhaltigem Material (grün).
Copyright/Foto: Jan Michels

Kontakt:
Dr. Jan Michels
Zoologisches Institut
Christian-Albrechts-Universität zu Kiel
Tel.: 0431/880-4511
E-Mail: jmichels@zoologie.uni-kiel.de

Dr. Boris Pawlowski | idw
Weitere Informationen:
http://www.uni-kiel.de
http://www.uni-kiel.de/aktuell/pm/2012/2012-200-ruderfusskrebs.shtml

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics