Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebs aus der Nachbarschaft

06.06.2017

Forscher beobachten Tumorbildung, bei der die auslösenden Signale aus angrenzendem Gewebe kommen

Der gängigen Lehrmeinung nach entsteht Krebs dadurch, dass einzelne Zellen durch Defekte in ihrer Erbsubstanz entarten, dadurch zusätzliche Fehler entstehen und letztlich die betroffenen Zellen beginnen, unkontrolliert zu wachsen. Diese Primärtumoren können streuen und an anderen Stellen im Körper Metastasen, so genannte Sekundärtumoren, bilden.


Grafik: Ralf Baumeister

Aber der Ursprung für Tumorbildung muss nicht notwendigerweise in den betroffenen Zellen selbst liegen, wie eine Studie der Universität Freiburg jetzt zeigt. Signale zur Entartung können auch von außen kommen – und besonders teilungsaktive, aber eigentlich intakte Stammzellen umprogrammieren.

Eigentlich hatten die Forscherinnen und Forscher nur die Rolle des Genschalters FOXO untersuchen wollen. Dessen Aktivierung führt in allen bislang untersuchten Organismen zu höherer Widerstandsfähigkeit gegen Stress. Beim Fadenwurm C. elegans verdoppelt FOXO-Aktivität die Lebenserwartung sogar. Zudem waren FOXO weitere positive Einflüsse nachgesagt worden, etwa bei der Unterdrückung von Tumorentstehung.

Nachdem aber bei verschiedenen Leukämien auch seine gegensätzliche, tumorfördernde Rolle beobachtet worden war, wollte die Arbeitsgruppe um die Freiburger Molekulargenetiker Dr. Wenjing Qi und Prof. Dr. Ralf Baumeister diese widersprüchlichen Resultate bei der Krebsentstehung in C. elegans näher untersuchen. In dem nur einen Millimeter kleinen Tier können Genfunktionen besonders leicht manipuliert und analysiert werden.

Tatsächlich reichte die Aktivierung von FOXO aus, um in den Stammzellen – fortwährend teilungsaktive Zellen mit der Fähigkeit, alle Zelltypen bilden zu können – einen Tumor entstehen zu lassen. Als die Forscher jedoch die Ursache für diesen Krebs lokalisieren wollten, stellten sie fest, dass diese nicht in den Tumorzellen selbst zu finden war, sondern in ganz anderen Geweben, darunter hauptsächlich Hautzellen. Die Forscher folgerten daraus, dass ein falsches Signal aus dem umliegenden Gewebe an die Stammzellen weitergegeben wird und dort einen Tumor bilden kann.

An diesem Signal beteiligt sind einige schon bekannte, aber auch mehrere neu entdeckte krebserzeugende Gene. „Mit C. elegans konnten wir genau diejenigen unter den 20.000 Genen der Erbsubstanz bestimmen, die für die Tumorbildung verantwortlich sind", erläutert Qi. „Noch haben wir die Suche nicht abgeschlossen, aber schon mehr als zehn solcher Risikogene gefunden." Einen Teil dieser Befunde veröffentlichte das Team nun in der Wissenschaftszeitschrift PLoS Genetics. Die Publikation entstand aus einem Projekt im Freiburger Sonderforschungsbereich 850 „Kontrolle der Zellmobilität bei Morphogenese, Tumorinvasion und Metastasierung".

„Stammzellen liegen in vielen Organen schlafend vor. Sie sind ein Reservoir des Immunsystems zum Ersatz defekter Körperzellen, und sie müssen auch die Zellen des Embryos bilden", erklärt Baumeister, der Leiter der Studie. „Wir gehen davon aus, dass ein fehlgeleitetes Signal aus normalerweise unverdächtigen Zellen, in unserem Beispiel Hautzellen, ausreicht, um das Teilungsprogramm von Stammzellen durcheinanderzubringen. Die betroffenen Stammzellen selbst brauchen dann keine Mutation aufzuweisen, um einen Tumor zu bilden. Sie wirken eher wie fehlgeleitete Feuerwerkskörper, die statt am Nachthimmel in einer Menschenmenge Funken sprühen."

Die Forscher wollen nun die Natur dieser grenzüberschreitenden Signale entschlüsseln und verstehen. „Alle bislang gefundenen Gene gibt es auch beim Menschen, und die bisherigen Ergebnisse lassen den Schluss zu, dass Tumoren in gleicher oder ähnlicher Form auch bei uns entstehen könnten", sagt Baumeister. Der Mechanismus dieser Krebsentstehung lasse vermuten, dass Metastasen gebildet werden können, ohne dass vorher an einem anderen Ort ein Primärtumor aufgetreten war. Bei rund einem Drittel aller metastasierenden Tumoren werden nämlich nie solche primären Tumorherde gefunden.

Ralf Baumeister ist Professor für Bioinformatik und Molekulargenetik an der Fakultät für Biologie sowie Mitglied des Exzellenzclusters BIOSS Centre for Biological Signalling Studies der Universität Freiburg.

Originalveröffentlichung:
Qi, W., Yan, Y, Pfeifer, D., Donner v. Gromoff, E., Wang, Y, Maier, W. and Baumeister, R. (2017) C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation. PLoS Genet 13(5): e1006801. https://doi.org/10.1371/journal.pgen.1006801 (open access).

Kontakt:
Prof. Dr. Ralf Baumeister, Bioinformatik und Molekulargenetik / Zentrum für Biochemie und Molekulare Zellforschung
Dr. Wenjing Qi, Bioinformatik und Molekulargenetik
Albert-Ludwigs-Universität Freiburg)
Tel.: 0761/203-8350 (Angelika Reichinger, Sekretariat, täglich 9 bis 13 Uhr)
E-Mail: baumeister@celegans.de, wenjing.qi@biologie.uni-freiburg.de, angelika.reichinger@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/krebs-aus-der-nachbarschaft?set_language=...

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau
Weitere Informationen:
http://www.uni-freiburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik