Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kreatives Flickwerk: Neue Theorie erklärt Evolution in den Genen

31.01.2011
Die Menge an Introns - das sind Abschnitte von Genen, die in Zellen nicht in Proteine übersetzt werden - ist charakteristisch für das Genom einer biologischen Art. Wie Introns in der Evolution entstanden sind, ist noch nicht restlos geklärt.

Eine Forschungsgruppe der Vetmeduni Vienna hat nun eine neue Theorie dazu entwickelt, wie die Kombination zweier DNA-Reparaturmechanismen den artspezifischen Introngehalt von Genomen hervorbringt. Die Arbeit wurde in der Zeitschrift „Trends in Genetics“ veröffentlicht.

Introns sind Abschnitte von Genen, die im Gegensatz zu so genannten Exons nicht in Proteine übersetzt werden. Beim Ablesen der DNA in der Zelle entsteht zunächst die Boten-RNA, aus der müssen die Intron-Abschnitte erst herausgeschnitten werden, bevor die Zellmaschinerie mit der Herstellung des jeweiligen Proteins beginnen kann. Ursprünglich als genetischer Müll betrachtet, weisen jüngste Forschungsergebnisse Introns eine Rolle in der Regulation von Genaktivität zu.

Manche biologische Arten, wie beispielsweise Hefe oder Kugelfische, haben sehr wenige Introns in ihren Genen, beim Menschen machen Introns ein Drittel des gesamten Genoms aus. Die Frage, warum der Anteil an Introns in den Genen zwischen Organismenarten so unterschiedlich ist, wird unter Forschern seit gut 30 Jahren kontrovers diskutiert.

Zerbrochene DNA wird wieder zusammengeflickt

Die bisher vorherrschende Erklärung für das Auftreten von Introns ist, dass ihr Anteil in den Genomen der Arten einem evolutionären Selektionsprozess unterliegen muss. Ashley Farlow vom Institut für Populationsgenetik der Vetmeduni Vienna hat jetzt jedoch eine alternative Hypothese zur Entstehung von Introns entwickelt. Ihr Erklärungsmodell geht von der bekannten Tatsache aus, dass die langen doppelsträngigen DNA-Moleküle manchmal auseinanderbrechen und von zwei unterschiedlichen und bereits gut bekannten Reparaturmechanismen wieder zusammengeflickt werden.

Zwei unabhängige Reparaturwege

Bei dem einen Reperaturmechanismus, so genannten homologen Rekombination, wird die DNA anhand einer Vorlage, der so genannten cDNA, aufwändig rekonstruiert. Eine Spezialität der cDNA ist, dass sie keine Introns mehr enthält, weil diese bei ihrem eigenen Entstehungsprozess schon herausgeschnitten wurden. Nach der Reparatur finden sich die ursprünglich vorhandenen Introns auch in der geflickten DNA nicht mehr. Der andere Reparaturweg besteht aus einem eher simplen und schnellen Zusammenflicken der beiden Enden des Bruchs, dem so genannten Non-Homologous End-Joining. Dabei werden an der Bruchstelle entweder kurze DNA-Stücke wie eine Art Kleber zusätzlich eingefügt, oder es wird auf beiden Seiten so lange DNA weggeschnitten, bis die entstehenden neuen Enden wieder zusammenpassen. Durch die Klebestelle entstehen entweder neue Introns, oder alte Introns gehen durch das Wegschneiden verloren.

Völlig neue Perspektive auf die Evolution von DNA

In der Evolutionsgeschichte gab es Zeiten, die von einer massiven Zunahme an Introns in den Genomen der Lebewesen gekennzeichnet waren. Zu anderen Zeiten nahm die Intronzahl rapide ab. Farlows neue Theorie erklärt diese Dynamik als Folge des Zusammenspiels der beiden DNA-Reparaturmechanismen. So schlägt Farlow vor, dass das Verhältnis, in dem die beiden Reparaturwege aktiv sind, für eine Art charakteristisch ist. Dadurch entstehen die artspezifischen Intronmengen in den Genen. Ashley Farlow dazu: „Die Reparatur von DNA-Brüchen mit dem Zuwachs oder Verlust an Introns zu verbinden, liefert eine sehr plausible Erklärung dafür, wie Intronmengen sich in den Genomen der Arten in evolutionärer Zeit verändert haben könnten.“

Der Artikel DNA double-strand break repair and the evolution of intron density von Ashley Farlow, Eshwar Meduri und Christian Schlötterer ist in der Jännerausgabe der Zeitschrift Trends in Genetics (2011, Vol. 27, pp. 1-6) veröffentlicht worden.

Der wissenschaftliche Artikel im Volltext online:
http://www.cell.com/trends/genetics/fulltext/S0168-9525%2810%2900210-6
Rückfragehinweis:
Dr. Ashley Farlow (Englisch), E ashley.farlow@vetmeduni.ac.at, T +43 1 25077-4333

Prof. Christian Schlötterer (Deutsch), E christian.chloetterer@vetmeduni.ac.at, T +43 1 25077-4300

Aussender:
Mag. Klaus Wassermann, E klaus.wassermann@vetmeduni.ac.at, T +43 1 25077-1153

Klaus Wassermann | idw
Weitere Informationen:
http://www.vetmeduni.ac.at
http://www.cell.com/trends/genetics/fulltext/S0168-9525%2810%2900210-6

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie