Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kräftemessen im Erbgutmolekül

09.09.2016

Unser Erbgut, die DNA, hat vereinfacht dargestellt die Struktur einer verdrehten Strickleiter – in der Fachwelt wird diese Struktur als Doppelhelix bezeichnet. Für ihre Stabilität sind unter anderem die sogenannten Basenpaar-Stapelwechselwirkungen verantwortlich. Wissenschaftlerinnen und Wissenschaftlern der Technischen Universität München (TUM) ist es zum ersten Mal gelungen, diese Kraft direkt zu messen. Das neue Wissen könnte dabei helfen, präzise molekulare Maschinen aus DNA zu konstruieren. Ihre Ergebnisse veröffentlichten die Forscher im Fachmagazin "Science".

Vor mehr als 60 Jahren klärten die Forscher Crick und Watson die Struktur der Desoxyribonukleinsäure, vor allem bekannt unter der englischen Abkürzung DNA, auf. Sie verglichen die Doppelhelix mit einer spiralförmig gedrehten Strickleiter. Die Sprossen dieser Leiter bilden dabei die Basenpaare Guanin und Cytosin sowie Thymin und Adenin. Doch was hält die DNA-Stränge in der Spiralform?


Mithilfe eines neuen Messsystems können die Forscher die Wechselwirkungen zwischen Basenpaaren messen.

Urheber Bild / Fotograf:

Christoph Hohmann & Hendrik Dietz/ Nano Initiative Munich/ TUM

Messsystem für Wechselwirkungen zwischen molekularen Oberflächen

Prof. Hendrik Dietz vom Lehrstuhl Experimentelle Biophysik nutzt DNA als Baumaterial, um molekulare Strukturen zu konstruieren. Daher hat er auch ein großes Interesse daran, dieses Material genau zu verstehen. "Es gibt im Grunde zwei Typen von Wechselwirkungen, die Doppelhelices stabilisieren", erklärt er. Zum einen sind in der DNA die sogenannten Wasserstoffbrückenbindungen vorhanden.

Zum anderen gibt es die sogenannten Basenpaar-Stapelwechselwirkungen, die zwischen den aufeinandergestapelten Basenpaaren entlang der Spiralachse wirken. Die Kräfte der Wasserstoffbrückenbindungen wirken dagegen senkrecht zur Achse. "Bisher ist eigentlich nicht klar, mit welchen Anteil diese beiden Kräfte jeweils zur gesamten Stabilität der DNA-Doppelhelix beitragen", erklärt Dietz.

Die sehr schwache Stapelkraft zwischen einzelnen Basenpaaren direkt zu messen, war eine große technische Herausforderung für die Forscher, an der sie sechs Jahre lang arbeiteten. Gemeinsam mit dem TUM-Lehrstuhl für Molekulare Biophysik (Prof. Matthias Rief) und dem TUM-Lehrstuhl für Theoretische Biophysik - Molekulardynamik (Prof. Martin Zacharias) gelang es ihnen, ein spezielles Messsystem zu entwickeln, das es zum ersten Mal möglich macht, ultraschwache Kontakt-Wechselwirkungen zwischen einzelnen Molekülen zu messen.

Der billionste Teil einer Tafel Schokolade

Vereinfacht dargestellt handelt es sich bei dem hierarchisch aufgebauten Messsystem um mikroskopische Balken, an deren Spitze sich eine oder mehrere parallel verlaufende Doppelhelix-Strukturen befinden. Diese sind so modifiziert, dass sie am Ende jeweils ein Basenpaar tragen. Zwei dieser mikroskopischen Balkeneinheiten sind durch ein Polymer miteinander verbunden.

Auf der anderen Seite sind die Balken an mikroskopische Kügelchen gekoppelt, die wiederum mit einer optischen Laserpinzette auseinandergezogen werden können. In Lösung können nun die Basenpaare am Ende der einen Balkeneinheit mit den Basenpaaren am Ende der anderen Balkeneinheit interagieren. Und es lässt sich messen, wie lange eine Stapelbindung zwischen ihnen anhält, bevor sie sich durch eine Fluktuation wieder trennen, und natürlich auch die Kraft, die zwischen den Basenpaaren wirkt.

Die von den Forschern gemessenen Kräfte liegen im Bereich Piconewton. "Ein Newton ist die Gewichtskraft einer Tafel Schokolade", erklärt Dietz. "Wir reden von einem 1000-Millardstel Anteil davon, das ist wirklich wenig." Kräfte im Bereich von zwei Piconewton reichen aus, um die durch Stapelwechselwirkungen erzeugte Bindung zu trennen. Die Wissenschaftler konnten außerdem beobachten, dass die Bindungen innerhalb weniger Millisekunden spontan zerfallen und sich wieder bilden. Wie stark die Bindungen sind und wie lange sie halten, hängt dabei stark davon ab, welche Basenpaare aufeinander gestapelt sind.

Hin zu DNA Maschinen

Die Ergebnisse aus den Messungen helfen dabei, mechanische Aspekte von grundlegenden biologischen Prozessen wie etwa die DNA-Replikation, also die Vervielfältigung des Erbguts, besser zu verstehen. Die geringe Lebensdauer der Stapelwechselwirkung könnte beispielsweise bedeuten, dass ein Enzym, das die Aufgabe hat, bei diesem Prozess die Basenpaare zu trennen, eigentlich nur darauf warten muss, dass die Stapelbindungen von alleine aufgehen – anstatt Kraft aufzuwenden, um sie zu trennen.

Dietz will die Daten aber auch direkt auf seine aktuellen Forschung anwenden: Er nutzt DNA als programmierbares Konstruktionsmaterial, um Maschinen auf Nanoebene zu bauen. Dabei orientiert er sich als Inspiration an den komplexen Strukturen, die etwa in den Zellen zu finden sind und unter anderem als molekulare Fabriken wichtige Verbindungen wie den Energiespeicher ATP synthetisieren. "Wir wissen also, was alles möglich wäre, wenn wir in der Lage wären, ausreichend komplizierte Strukturen zu bauen", sagt Dietz. "Und wenn wir ein besseres Verständnis der molekularen Wechselwirkungen haben, können wir natürlich besser mit den Molekülen bauen."

Momentan konstruiert die Arbeitsgruppe einen molekularen Rotations-Motor aus DNA, dessen Komponenten über Stapelbindungen ineinandergreifen und zusammenhalten. Ziel ist es, eine gerichtete Rotation durch chemische oder thermische Impulse steuern zu können.
---
Die Arbeit wurde finanziell unterstützt von der Deutschen Forschungsgemeinschaft, dem Europäischen Forschungsrat sowie den Exzellenzclustern "Center for integrated Protein Science Munich" und "Nanosystems Initiative Munich".

Publikation: Fabian Kilchherr, Christian Wachauf, Benjamin Pelz, Matthias Rief, Martin Zacharias, Hendrik Dietz: "Single-molecule dissection of stacking forces in DNA", Science 353, DOI: 10.1126/science.aaf5508
http://science.sciencemag.org/cgi/doi/10.1126/science.aaf5508

Bilder zum Download: https://mediatum.ub.tum.de/1324923

Kontakt:
Technische Universität München
Prof. Hendrik Dietz
+49 (0) 89 289-11615
dietz@tum.de
http://bionano.physik.tu-muenchen.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie