Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Koordinierung von Nanomaschinen für künstliche Muskelkontraktionen

19.11.2012
Einem Forscherteam vom Charles Sandron Institut [1] sowie vom Labor für Materie und komplexe Systeme der Universität Paris Diderot [2] ist es zum ersten Mal gelungen, Tausende künstlich hergestellte molekulare Maschinen koordiniert in Bewegung zu setzen, ähnlich wie bei der Kontraktion von Muskelfasern. Diese Kontraktion erstreckte sich über eine Länge von bis zu mehreren Mikrometern [3].

Biologische Nanomaschinen (Moleküle) sind komplexe Proteinverbindungen, die für wesentliche Lebensfunktionen wie den Ionentransport, die ATP-Synthese (energetisches Molekül) oder die Zellteilung verantwortlich sind.

Unsere Muskeln werden durch die koordinierte Bewegung von Tausenden solcher Nanomaschinen gesteuert. Die Bewegung jeder einzelnen Nanomaschine erstreckt sich über eine Länge von nur wenigen Nanometern. Werden jedoch Tausende solcher koordinierten Bewegungen miteinander verknüpft, so wird die daraus resultierende Bewegung auf makroskopischer Ebene verstärkt.

Trotz zahlreicher Forschritte in der Herstellung künstlicher Nanomaschinen konnte das Problem ihrer räumlichen und zeitlichen Koordinierung bis heute nicht gelöst werden.

Das französische Forscherteam nutzte nun die natürlichen Prozesse der Nanomaschinen, um mit speziellen Proteinen einen künstlichen Muskelstrang kontrolliert strecken und kontrahieren zu lassen. Dazu hefteten sie die Eiweiß-Moleküle an eine winzige Kunststofffaser an und steuerten die Bewegung über den Säuregrad (pH-Wertes) der Flüssigkeit um den Muskel. Durch die Verkettung Tausender Nanomaschinen wurde die Bewegung dieser Molekülkette im Vergleich zu der mit einer einzelnen Nanomaschine erzielten Bewegung um ein 10.000-faches verstärkt.

Dieses Ergebnis ebnet den Weg für neue Anwendungen bei der Herstellung von künstlichen Muskeln, die beispielsweise in der Robotik oder für medizinische Prothesen genutzt werden könnten, sowie für die Entwicklung neuer Werkstoffe mit eingebauten Nanomaschinen.

[1] Webseite des Charles Sandron Instituts: http://www-ics.u-strasbg.fr/?lang=en

[2] Webseite des Labors für Materie und komplexe Systeme: http://www.msc.univ-paris-diderot.fr/?lang=en

[3] Dieses Ergebnis wurde im Fachzeitschrift Angewandte Chemie International Edition veröffentlicht: http://onlinelibrary.wiley.com/doi/10.1002/anie.201206571/abstract

Kontakt: Nicolas Giuseppone, Forscher am Charles Sandron Institut – Tel.: +49 (0)3 88 41 41 66 l giuseppone@unistra.fr

Quelle: Pressemitteilung des französischen Zentrums für wissenschaftliche Forschung (CNRS) – 19/10/2012 – http://www2.cnrs.fr/presse/communique/2841.htm

Redakteur: Lucas Ansart, lucas.ansart@diplomatie.gouv.fr

Lucas Ansart | Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit