Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kooperierende Bakterien isolieren Egoisten

08.12.2015

Bakterien, die sich gegenseitig ernähren, können ihre Partnerschaft auf zweidimensionalen Oberflächen festigen und nicht-kooperative Bakterien vom Nahrungszugang ausschließen. Wissenschaftler des Max-Planck-Instituts für chemische Ökologie und der Friedrich-Schiller-Universität in Jena konnten zeigen, dass zwei Bakterienarten, die in kooperativer Weise Aminosäuren austauschen, in räumlich strukturierten Umgebungen vor der Ausbeutung durch nicht-kooperierende Bakterien sicher sind, weil diesen der Zugang zu den ausgetauschten Aminosäuren verwehrt wird. (The ISME Journal, Dezember 2015)

In natürlichen Mikrobengemeinschaften tauschen verschiedene Bakterienarten häufig Nährstoffe miteinander aus. Dabei geben Bakterien Verbindungen wie Aminosäuren oder Vitamine in ihre Umgebung ab und füttern damit andere Bakterienzellen.


Experiment (links) und Computermodell (rechts): Kooperierende Bakterien sind rot dargestellt, nicht kooperierende Bakterien grün. Die opportunistischen Bakterien können nur am Rand existieren.

S. Pande / Max-Planck-Institut für chemische Ökologie; S. Lang / Friedrich-Schiller-Universität Jena


Ergebnisse der Aminosäuremessungen: Deren Konzentration ist in der Umgebung kooperativer Bakterien hoch (oben), im Umfeld opportunistischer Bakterien hingegen sind sie nicht nachweisbar (unten).

S. Pande, F. Kaftan / Max-Planck-Institut für chemische Ökologie; S. Lang / Friedrich-Schiller-Universität Jena

Dadurch verbrauchen sie zwar Ressourcen, profitieren aber im Gegenzug von den Nährstoffen, die ihnen ihre bakteriellen Partner zur Verfügung stellen. Man spricht daher von einem kooperativen Stoffaustausch.

Wissenschaftler am Max-Planck-Institut für chemische Ökologie und der Friedrich-Schiller-Universität in Jena konnten jetzt zeigen, dass Bakterien, die selbst nicht in die Nährstoffproduktion investieren, auch nicht ohne weiteres in den Genuss der Vorteile dieses wechselseitigen Stoffaustausches kommen.

Sie wiesen nach, dass zwei Bakterienarten, die in kooperativer Weise Aminosäuren austauschen, in räumlich strukturierten Umgebungen vor der Ausbeutung durch opportunistische, nicht-kooperierende Bakterien sicher sind, weil diesen der Zugang zu den ausgetauschten Aminosäuren verwehrt wird. Dadurch wird die kooperative Wechselwirkung langfristig stabilisiert.

Die Forschungsgruppe „Experimentelle Ökologie und Evolution“ unter der Leitung von Christian Kost erforscht wie kooperative Interaktionen zwischen Lebewesen entstehen. Dafür untersuchen die Wissenschaftler eine sehr weit verbreitete Arbeitsteilung: den wechselseitigen Nährstoffaustausch einzelliger Bakterien.

Für diese winzigen Organismen ist es oft vorteilhafter nicht alle Stoffwechselfunktionen selbst zu übernehmen, sondern diese Arbeit untereinander aufzuteilen. Durch den sich anschließenden gegenseitigen Austausch von Nährstoffen sparen die an der Interaktion beteiligten Bakterien Energie.

Dass sich diese Arbeitsteilung positiv auf das Bakterienwachstum auswirkt, konnten die Wissenschaftler bereits in früheren Arbeiten zeigen. Für die neue Studie gingen sie der Frage nach, wie eine solche Kooperation langfristig bestehen kann, wenn es nicht-kooperierende Bakterien gibt, die die für den wechselseitigen Austausch produzierten Nährstoffe zwar aufnehmen, sich selbst jedoch nicht an der Nährstoffproduktion beteiligen. In diesem Fall entsteht den kooperativen Stoffproduzenten ein evolutionärer Nachteil, der zum Zusammenbruch der Partnerschaft führen könnte.

Ob dies tatsächlich der Fall ist, haben die Wissenschaftler experimentell überprüft. Hierzu haben sie gentechnisch „Kooperierer“ zweier Bakterienarten erzeugt, die erhöhte Mengen bestimmter Aminosäuren in ihre Umgebung abgaben. „Tatsächlich war es so, dass „Nicht-Kooperierer“ in einem gut durchmischten Flüssigmedium einen Wachstumsvorteil gegenüber Kooperierern hatten, weil sie unter diesen Bedingungen uneingeschränkten Zugang zu den Aminosäuren im Medium hatten. Im Gegensatz dazu war das Wachstum von Nicht-Kooperieren auf einer zweidimensionalen Oberfläche stark unterdrückt“, fasst Christian Kost die Ergebnisse der Experimente zusammen. Eine genauere Analyse zeigte, dass die nicht-kooperierenden Bakterien lediglich am Rand von kooperierenden Bakterienkolonien existieren konnten.

Für ihre Untersuchungen kombinierten die Wissenschaftler verschiedene methodische Ansätze. Die Grundlage bildete dabei ein noch junger Forschungsansatz, der als „synthetische Ökologie“ bezeichnet wird: Hierbei werden mit Hilfe moderner, gentechnischer Methoden bestimmte Mutationen in bakterielle Genome eingeführt. Die so erzeugten Bakterienstämme werden in Experimenten zusammen kultiviert und deren ökologischen Wechselwirkungen analysiert.

Parallel dazu wurden am Jenaer Lehrstuhl für Bioinformatik Computermodelle zum Vergleich erstellt. Wichtig war darüber hinaus die chemische Analytik mit bildgebender Massenspektrometrie, mit deren Hilfe die bakteriellen Stoffwechselprodukte sichtbar gemacht werden konnten. Erst die Kombination mikrobiologischer Methoden mit chemisch-analytischen Herangehensweisen und Computersimulationen machte es möglich, das zugrundeliegende Phänomen zu verstehen und aufzuklären.

„Die Tatsache, dass ein so einfaches Prinzip eine derart komplexe Interaktion effektiv stabilisieren kann, spricht dafür, dass solche Phänomene in natürlichen Bakteriengemeinschaften eine ähnlich wichtige Rolle spielen“, ist sich Christian Kost sicher. Schließlich kommen Bakterien fast ausschließlich in sogenannten Biofilmen vor – eine aus vielen Bakterienarten bestehende Schleimschicht, mit der sich Mikroorganismen an Oberflächen anhaften können.

Beispiele sind Karies verursachende Bakterien im Zahnbelag oder zur Abwasserreinigung genutzte Bakteriengemeinschaften in Kläranlagen. Darüber hinaus sind Biofilme auch für die medizinische Forschung äußerst relevant: Sie spielen nicht nur bei vielen Infektionskrankheiten eine wichtige Rolle, indem sie die bakteriellen Krankheitserreger vor der Immunantwort des erkrankten Organismus oder Antibiotika schützen, sondern stellen auch ein ernsthaftes Problem bei der Nutzung medizinischer Implantate dar, wenn sich dort Bakterienfilme ansiedeln und ausbreiten.

In dieser neuen Studie konnte nun der Mechanismus identifiziert werden, durch den sich Zellcluster aus kooperierenden Bakterien bilden, die langfristig nicht-kooperierende Bakterien in der Gemeinschaft verdrängen. „Die Bedeutung dieses Mechanismus ergibt sich aus der Tatsache, dass keine komplizierten oder durch Evolution neu entstandene Bedingungen, wie beispielsweise die Erkennung möglicher Kooperationspartner, erfüllt sein müssen, damit diese Partnerschaft langfristig stabilisiert wird. Zwei kooperierende Bakterienstämme und eine zweidimensionale Oberfläche reichen aus, damit der beschriebene Effekt eintritt“, erklärt Christian Kost.

Die Studie wirft viele neue spannende Fragen auf, denen die Forscher nun weiter nachgehen wollen. So interessieren sie sich beispielsweise dafür, ob ähnliche synergistische Effekte auch bei aus mehr als zwei Partnern bestehenden Gemeinschaften zu beobachten sind. In ihren natürlichen Lebensräumen könnten sich mehr als zwei Bakterienarten an solchen Kooperationen beteiligen, sodass regelrechte Interaktionsnetzwerke entstehen. Darüber hinaus wurden die Nährstoff-abgebenden Bakterienmutanten in dieser Studie künstlich hergestellt.

Ob durch natürliche Mutation entstandene „Kooperierer“ in einem natürlichen Lebensraum, wie beispielsweise Böden, eine vergleichbare Dynamik zeigen, bleibt ebenfalls zu überprüfen. Da Bakterien sehr häufig in Biofilmen vorkommen, ist der kooperative Stoffwechselaustausch zwischen Bakterien vermutlich viel weiter verbreitet als bislang angenommen. Ein grundsätzliches Verständnis der Faktoren und Mechanismen, die Bakterienwachstum fördern oder hemmen, könnte daher auch wichtige Hinweise geben, wie man schädliche Bakterien bekämpfen und nützliche Bakterien besser nutzen kann. [CK/AO]

Originalveröffentlichung:
Pande, S., Kaftan, F., Lang, S., Svatoš, A., Germerodt, S., Kost, C. (2015). Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. The ISME Journal. DOI:10.1038/ismej.2015.212
http://dx.doi.org/10.1038/ismej.2015.212

Weitere Informationen:
Dr. Christian Kost, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena, Tel. +49 3641 57-1212, E-Mail ckost@ice.mpg.de

Kontakt und Bildanfragen:
Angela Overmeyer, M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über
http://www.ice.mpg.de/ext/downloads2015.html

Weitere Informationen:

http://www.ice.mpg.de/ext/experimental-evolution.html?&L=1 (Forschungsgruppe Experimentelle Ökologie und Evolution)
http://www.ice.mpg.de/ext/1051.html?&L=1 (Arbeitsteilung im Reagenzglas, Pressemeldung vom 2. Dezember 2013)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Superkondensatoren aus Holzbestandteilen
24.05.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Was einen guten Katalysator ausmacht
24.05.2018 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics