Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Konzentration aufs Wesentliche

28.12.2015

Für die Planung von Handlungen ist dem Gehirn das Ziel wichtiger als der Weg

Was ist wichtiger, während wir eine Handlung planen: das übergeordnete Ziel oder der Weg dorthin? Wissenschaftler am Max-Planck-Institut für Kognitions- und Neurowissenschaften in Leipzig haben entdeckt, dass wir zunächst das Ziel im Auge haben.


Während des Spiels zeichneten die Forscher mit Hilfe eines Elektroenzephalogramms die Hirnströme der Pianisten auf.

© MPI für Kognitions- und Neurowissenschaften

Belegt haben sie das in einer Studie mit ausgebildeten Pianisten, deren geistige Prozesse sich mehr auf die anvisierte Harmonie einer Melodie konzentrierten als auf die Fingerpositionen während der einzelnen Akkorde.

Virtuos fliegen die Finger eines Pianisten über die Tasten und erzeugen mit scheinbarer Leichtigkeit eine Melodie, die das Publikum in ihren Bann zieht. Aber was leistet eigentlich das Gehirn des Klavierspielers, während er das Stück spielt? Der Pianist muss sowohl bedenken, was er spielt, also welche Tasten er bedient, damit eine wohlklingende Melodie entsteht, als auch wie er spielt, also welche Finger er benutzt.

„Wir wissen nun, dass der Musiker nicht beides gleichzeitig im Blick behält, sondern zunächst die angestrebte Melodie und anschließend die entsprechenden Fingerbewegungen dazu. Also erst das Was und dann das Wie“, so Daniela Sammler vom Max-Planck-Institut für Kognitions- und Neurowissenschaften. Ähnlich eines Fußballspielers, der sich vorrangig darauf konzentriert, den Ball ins Tor zu schießen, ohne explizit darüber nachzudenken, wie er seine Füße dafür bewegt.

Herausgefunden haben die Neurowissenschaftler diese Zusammenhänge, indem sie professionelle Pianisten gezielt in ihrem natürlichen Spielfluss störten. Sie spielten den Musikern dazu eine Melodie vor, die diese nachspielen sollten. Plötzlich tauchte darin jedoch ein unerwarteter Akkord auf, der nicht ins melodische Schema passte und im Musikerohr falsch klang.

„Wie schnell der Pianist darauf reagieren kann und den unerwarteten Ton spielt, hängt davon ab, wie lang die Melodie davor war. Wenn er mehr Zeit hat, sich auf die Melodie einzustellen, wird es umso stärker überrascht, wenn seine Erwartung durch den Missklang gestört wird“, erklärt Roberta Bianco, Erstautorin der zugehörigen Studie und Doktorandin am Leipziger Max-Planck-Institut.

Grund für diese Verzögerung ist, dass der Pianist schon mit der Planung der eigentlich richtigen Bewegung hin zum wohlklingenden Ton begonnen hatte, diese aber auf einmal stoppen und umprogrammieren musste.

Solche Prozesse laufen keineswegs nur bei Pianisten ab. Ähnliches geschieht auch, während wir unsere Sprache und deren Grammatik benutzen. Wir erwarten beispielsweise, dass der Satzbeginn „Ich esse jetzt einen“ mit einem Nomen endet, und wären verwirrt, wenn stattdessen ein „lesen“ folgen würde. „Ähnlich wie den Satzbau unserer Sprache im Gehirn, hat ein professioneller Pianist die Regeln der Musik gewissermaßen in den Fingern verinnerlicht “, so die gebürtige Italienerin, selbst studierte Musikwissenschaftlerin.

Die Ergebnisse belegen damit, dass das Gehirn unsere Umgebung ständig nach Regelmäßigkeiten abscannt um uns unsere alltäglichen Handlungen und Interaktionen zu ermöglichen. Daraus leitet es dann ab, was als nächstes kommen könnte und bereitet die dafür notwendigen Prozesse vor. Geschieht dann etwas unerwartetes, benötigt es eine gewisse Zeit, um sich umzustellen.

„Erstaunlich ist vor allem, dass bei einem Pianisten während seines virtuosen Spiels prinzipiell die gleichen geistigen Prozesse ablaufen, die ein jeder von uns im Alltag nutzt, beispielsweise beim Fußballspielen oder Kaffeekochen“, fügt Bianco hinzu.


Ansprechpartner

Daniela Sammler
Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig
Telefon: +49 341 9940-2404

Fax: +49 341 9940-2679

E-Mail: sammler@cbs.mpg.de


Roberta Bianco
Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig
Telefon: +49 341 9940-2460

E-Mail: bianco@cbs.mpg.de


Verena Müller
Wissenschaftsredakteurin

Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig
Telefon: +49 341 9940-148

E-Mail: verenamueller@cbs.mpg.de


Originalpublikation
Bianco R, Novembre G, Keller PE, Scharf F, Friederici AD, Villringer A, Sammler D

Syntax in Action Has Priority over Movement Selection in Piano Playing: An ERP Study.

J Cogn Neurosci. 2016 Jan;28(1):41-54. doi: 10.1162

Daniela Sammler | Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig
Weitere Informationen:
https://www.mpg.de/9812424/planung-handlung-ziel?filter_order=L&research_topic=

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie