Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kontinentalrand mit Leckage

27.03.2017

Wenn Methangas vor der Küste Spitzbergens aus dem Meeresboden austritt, ist die Ursache davon nicht immer die Auflösung von Methanhydraten im Zuge einer Temperaturerwärmung. Basis für diese Annahme sind zwei Fahrten zur Küste Spitzbergens. Die Ergebnisse hat Susan Mau hat jetzt gemeinsam mit weiteren Kolleginnen und Kollegen vom MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen, dem Alfred-Wegener-Institut Bremerhaven und der Oregon State University (USA) veröffentlicht.

Am oberen Kontinentalrand, vor der Küste Spitzbergens zwischen der Bäreninsel und dem Kongsfjord, tritt an mehr als tausend Stellen Methangas aus dem Meeresboden aus. Frühere Expeditionen berichteten von Methangasaustritten vor dem Prinz-Karl-Vorland, wobei manche Wissenschaftlerinnen und Wissenschaftler von einer Methanfreisetzung durch Auflösung von Methanhydraten im Sediment im Zuge einer Temperaturerwärmung der vergangenen Jahre ausgingen.


Teammitglieder füllen Wasserproben ab, um sie auf Methan zu untersuchen.

Foto: Gerhard Bohrmann/ MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen


Das Forschungschiff Heincke am Anleger von Ny-Ålesund.

Foto: G. Bohrmann/MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen

Die Ergebnisse zweier Fahrten mit dem Forschungsschiff HEINCKE im Jahre 2015 zeigen allerdings, dass die Methanemissionen nicht auf diese Stelle begrenzt sind, sondern über fünf Breitengrade entlang des Kontinentalrandes immer wieder anzutreffen und sehr wahrscheinlich an die Hornsund-Bruchzone gebunden sind.

Die Ergebnisse hat Susan Mau jetzt gemeinsam mit weiteren Kolleginnen und Kollegen vom MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen, dem Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Bremerhaven und der Oregon State University (USA) veröffentlicht.

Als Basis für die Untersuchungen von Susan Mau und ihren Kolleginnen und Kollegen dienten Daten von zwei Forschungsfahrten im Sommer 2015. „Hydroakustisch wurden die Gasblasenaustritte, sogenannte Flares, nachgewiesen. Wir wussten also vorher, dass vor dem Prinz-Karl-Vorland Gas austritt, denn die Stelle dort ist sehr gut untersucht“, erklärt Susan Mau. Ihre Daten zeigen aber, dass es mehr Austrittsstellen vor der gesamten Küste gibt.

Diese Austritte folgen einer Bruchzone am oberen Kontinentalrand, die möglicherweise den Aufstieg von Methan aus größeren Tiefen entlang der Nahtstelle ermöglicht. Wie aus einem löchrigen Fahrradschlauch, der in Wasser getaucht wird, kann das aufsteigende Gas entlang der so genannten Störungszonen austreten und im Meerwasser aufsteigen. Am gesamten Hang vor der Küste Svalbards haben die Wissenschaftlerinnen und Wissenschaftler die Methankonzentration gemessen, sie ist laut Mau überall hoch gewesen. „Stark erhöht war sie aber an den Stellen, an denen viele dieser Flares sind.“

Zudem sei auffällig gewesen, dass das Gas eher an höher gelegenen Stellen austritt und nicht in den Senken dazwischen. Als Grund dafür vermutet Susan Mau feinkörnige Ablagerungen, die die Löcher verstopfen, an denen das Gas austreten könnte.

Warum gibt es so viele nachgewiesene Austrittsstellen vor dem Prinz-Karl-Vorland? Gibt es noch andere Austrittstellen vor der Küste Svalbards? Dies waren die Ausgangsüberlegungen für die von Susan Mau und Gerhard Bohrmann geleiteten Fahrten. Hinzu kommt, dass durch Gesteinsproben und seismische Untersuchungen nachgewiesen ist, dass die gesamte Küste eine ähnliche tektonische Beschaffenheit und eiszeitliche Geschichte hat.

Die nachgewiesenen Gasaustritte vor der Küste Svalbards sind vor allem darum interessant, weil Forschende vermuten, hier steige Methan auf, das sich wiederum aus Methanhydraten löst. Methanhydrate haben eine feste eisähnliche Struktur, die nur unter bestimmten Druckverhältnissen in definierten Tiefen und bei niedrigen Temperaturen stabil sind. Erwärmt sich das Meerwasser, sind Methanhydrate nicht mehr stabil, als Folge tritt Methangas aus.

Wird also das Wasser wärmer – zum Beispiel durch den Klimawandel –, kommen Methanhydrate nur in Sedimenten tieferen Meeresbodens vor. Die Zone, in der Gashydrate stabil sind, verlagert sich also. Die von Mau und ihren Kolleginnen und Kollegen aufgezeichneten Gasblasenemissionen treten aber auch oberhalb dieser Grenze aus und sind somit keine anthropogen ausgelösten Gasfreisetzungen aus Methanhydraten. Diese Methangasaustritte zeigen eher, dass große Mengen des Gases aus der Tiefe entlang der Hornesund-Störungszone, einer weitreichenden Bruchzone in der Erdkruste austreten; ein natürlicher geologischer Prozess.

Das führt zu einer hohen Gaskonzentration, die das Team über eine Länge von hunderten von Kilometern entlang der Küste gefunden hat. Die Daten vom Sommer 2015 zeigen weiter, dass das gelöste Methan durch Mikroben in der Wassersäule oxidiert wurde und nur ein kleinerer Teil in die Atmosphäre übergegangen ist. Mikroben bewahren sozusagen vor einer erhöhten Treibhausgaskonzentration in der Atmosphäre.

Aus den aktuellen Ergebnissen ergeben sich nun zahlreiche weitere Ansätze für die Geologen Susan Mau und Gerhard Bohrmann: Wie genau verläuft die tatsächliche Störungszone? Wie ist der Untergrund beschaffen? Wo liegen die Reservoirs der Gasvorkommen? Und: Wie alt ist das austretende Gas? Dass die zahlenmäßig häufigen Gasblasenaustritte mit von Menschen verursachter Erwärmung der Ozeane zusammenhängen, hat sich indes nicht bestätigt.

Weil Mau mit ihren Kolleginnen und Kollegen vor allem im Sommer vor der Küste unterwegs war, ist unklar, was genau in anderen, kälteren und stürmischeren Jahreszeiten passiert. „Unsere Ergebnisse schreien förmlich danach, die Austritte über längere Zeiträume zu untersuchen“, betont Mau. „Wir müssen hinterfragen, was der Grund für die hohe Methangaskonzentration war, die immer wieder in der Erdgeschichte auftreten. Ziel ist es, die Austrittstellen zu beobachten um herauszufinden, was genau über das Jahr passiert. Erst dann ist es möglich, genauere Schlüsse zu ziehen – zum Beispiel auch dazu, ob die Gasaustritte in diesen Tiefen und in dieser Klimazone klimarelevant sind.“

Originalveröffentlichung:
Susan Mau, Miriam Römer, Martha E. Torres, Ingeburg Bussmann, Thomas Pape, Ellen Damm, Patrizia Geprägs, Paul Wintersteller, Chieh-Wei Hsu, Markus Loher und Gerhard Bohrmann: Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden. Sci. Rep. 7, 42997; doi: 10.1038/srep42997 (2017)

Kontakt:
Dr. Susan Mau
Telefon:0421-21865059
E-Mail: smau@marum.de

Weitere Informationen / Bildmaterial:
Ulrike Prange
MARUM-Öffentlichkeitsarbeit
Telefon: 0421 218 65540
E-Mail: medien@marum.de

Weitere Informationen:

http://www.marum.de/Kontinentalrand_mit_Leckage.html

Ulrike Prange | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie