Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplexe in den Griff bekommen

04.05.2009
Wissenschaftler von Paul Scherrer Institut und EMBL entwickeln automatisiertes Verfahren zur Herstellung von Multiprotein-Komplexen

Die meisten Vorgänge in lebenden Zellen werden von molekularen "Maschinen" ausgeführt, die aus vielen, miteinander wechselwirkenden Proteinen bestehen.

Solche Proteinkomplexe stehen im Mittelpunkt aktueller biologischer Forschung, sind aber aussergewöhnlich schwer zu untersuchen, da die in Zellen vorhandenen Mengen für die Gewinnung gereinigter Komplexe meist zu gering sind.

Eine neue Technologie zur Herstellung von Multiprotein-Komplexen, entwickelt von Forschern am Paul Scherrer Institut (PSI) in Villigen, Schweiz, und am European Molecular Biology Laboratory (EMBL) in Grenoble, Frankreich, macht jetzt den Biologen das Leben einfacher.

In einer Veröffentlichung, die am 3. Mai in der Online-Ausgabe der Fachzeitschrift Nature Methods erschienen ist, beschreiben Forscher der Gruppen von Michel Steinmetz am PSI und Imre Berger am EMBL die erste durchgehend automatisierte Methodik zur Herstellung von Multiproteinkomplexen - ACEMBL.

"Das Verfahren macht es möglich, bislang schwer zugängliche Multiprotein-Komplexe schneller und effizienter in ihrer Struktur und Funktion zu erforschen." erklärt Michel Steinmetz, Leiter der Forschungsgruppe Proteinwechselwirkungen am PSI, die Vorteile von ACEMBL. Seine Arbeitsgruppe zeichnet unter anderem für die komplette Automatisierung des Verfahrens verantwortlich und hat das Verfahren auch anhand von bekannten Testkomplexen validiert.

ACEMBL kann Komplexe, die aus verschiedenen Arten von Bauteilen bestehen, herstellen, darunter Proteine, RNA und andere Biomoleküle. Zunächst ist das automatisierte Verfahren dafür ausgelegt, Proteine in Bakterien zu produzieren, in Zukunft wird es angepasst werden, um Komplexe auch in Säugerzellen herzustellen. Dies wird es ermöglichen, noch grössere, kompliziertere Proteinkomplexe menschlichen Ursprungs zu untersuchen, von denen viele krankheitsrelevant sind und damit als Ausgangspunkt für die Entwicklung neuer Medikamente dienen können. Das System ist bereits auf kommerzielles Interesse gestossen: ACEMBL wurde von dem Biotechnologie-Unternehmen ATG biosynthetics GmbH lizenziert.

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Das Europäische Laboratorium für Molekularbiologie ist ein Grundlagenforschungsinstitut, das sich über öffentliche Forschungsgelder aus 20 Mitgliedstaaten und dem assoziierten Mitglied Australien finanziert. Etwa 80 unabhängige Forschungsgruppen arbeiten am EMBL zu Themen des gesamten Spektrums der Molekularbiologie. Die Eckpfeiler der EMBL- Mission sind: molekularbiologische Grundlagenforschung; Ausbildung von Wissenschaftlern, Studenten und Gastforschern aller Ebenen; Serviceleistungen für Wissenschaftler in den Mitgliedstaaten; Entwicklung neuer Instrumente und Methoden in den Biowissenschaften sowie aktiver Technologietransfer.

Kontakt:

Dr. Michel Steinmetz, Paul Scherrer Institut, Forschungsgruppe Proteinwechselwirkungen
Tel: +41 (0)56 310 4754
E-Mail: michel.steinmetz@psi.ch
Prof. Dr. Fritz Winkler, Paul Scherrer Institut, Forschungsbereich Biowissenschaften
Tel: +41 (0)56 310 4258
E-mail: fritz.winkler@psi.ch
PD Dr. Imre Berger, EMBL, Structural Biology Unit, Grenoble Outstation,
Tel: +33 4 7620 7061
E-Mail: iberger@embl.fr
Originalveröffentlichung:
Automated Unrestricted Multigene Recombineering for Multiprotein Complex Production
Bieniossek, C., Nie, Y., Frey, D., Olieric, N., Schaffitzel, C., Collinson, I., Romier, C., Berger, P., Richmond, T.J., Steinmetz, M.O. & Berger, I.

Nature Methods, Published Online 3 May 2009, http://dx.doi.org/10.1038/nmeth.1326

Dagmar Baroke | idw
Weitere Informationen:
http://dx.doi.org/10.1038/nmeth.1326
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics