Komplexe Beziehungen besser verstehen

Durch statistische Analysen können natürliche Netzwerke wie das Nervensystem eines Wurms (oben) mit Modellnetzwerken (unten) verglichen werden. Grafik: Bernstein Center Freiburg; Wurm-Netzwerk nach Varshney et al., PLoS Comp Biol. 2011<br>

Von Epidemien, die sich über den Globus ausbreiten, bis zum Beginn eines epileptischen Anfalls im Gehirn: Viele Ereignisse können als Folge von Netzwerkaktivität gesehen werden. Oft ist es von entscheidender Bedeutung, die Eigenschaften dieser Netzwerke zu verstehen.

Allerdings sind sie häufig zu komplex, um sie vollständig zu beschreiben. Doch Wissenschaftler vom Bernstein Center der Universität Freiburg konnten nun zeigen, wie sich globale Gesetzmäßigkeiten komplexer Netzwerke in lokalen statistischen Eigenschaften niederschlagen, die viel leichter untersucht werden können. Bei ihrer Forschung profitierten die Freiburger von den Hochleistungsrechnern des Bernstein Centers, die normalerweise eingesetzt werden, um die Aktivität von Nervenzellen im Gehirn zu simulieren.

In einem Artikel der Fachzeitschrift PLoS ONE beschreiben Stefano Cardanobile und seine Kollegen, wie sie 200.000 im Computer erzeugte Netzwerke analysiert haben – mit Modellen, die Wissenschaftlerinnen und Wissenschaftler nutzen, um in der Natur vorkommende Netzwerke zu verstehen. Die Modelle verglichen die Forscher mit gut erforschten Netzwerken: dem Stoffwechsel eines Bakteriums, den Beziehungen zwischen Synonymen in einem Wörterbuch und dem Nervennetz eines Wurms. Damit konnten sie jene Modelle bestimmen, die die Eigenschaften realer Netzwerke am besten vorhersagen. Diese Einsichten können Wissenschaftlern unterschiedlichster Disziplinen helfen, das richtige Modell heranzuziehen.
Vor allem konnten die Freiburger aber zeigen, dass es möglich ist, globale Eigenschaften komplexer Netzwerke aus statistischen Daten abzuleiten, die über lokale Merkmale vorliegen. Somit erkennen sie auch dann wichtige Eigenschaften von Netzwerken, wenn diese nicht in Gänze analysiert werden können – was bei großen Systemen, etwa sozialen Kontakten zwischen Menschen oder den Verbindungen im Gehirn, unmöglich wäre. Daher leistet die Studie, so die Autoren, einen wichtigen Beitrag zum besseren Verständnis komplexer Netzwerke.

Kontakt:
Prof. Dr. Stefan Rotter
Bernstein Center Freiburg
Tel.: 0761/203-9316
Fax: 0761/203-9559
E-Mail: stefan.rotter@biologie.uni-freiburg.de
http://dx.plos.org/10.1371/journal.pone.0037911 – Originalveröffentlichung in PLoS ONE: S. Cardanobile, V. Pernice, M. Deger und S. Rotter (2012) Inferring general relations between network characteristics from specific network ensembles.

Media Contact

Rudolf-Werner Dreier idw

Weitere Informationen:

http://www.uni-freiburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer