Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplexe Beziehungen besser verstehen

08.06.2012
Freiburger Forscher zeigen, wie globale Eigenschaften von Netzwerken aus lokalen Merkmalen ersichtlich werden

Von Epidemien, die sich über den Globus ausbreiten, bis zum Beginn eines epileptischen Anfalls im Gehirn: Viele Ereignisse können als Folge von Netzwerkaktivität gesehen werden. Oft ist es von entscheidender Bedeutung, die Eigenschaften dieser Netzwerke zu verstehen.


Durch statistische Analysen können natürliche Netzwerke wie das Nervensystem eines Wurms (oben) mit Modellnetzwerken (unten) verglichen werden. Grafik: Bernstein Center Freiburg; Wurm-Netzwerk nach Varshney et al., PLoS Comp Biol. 2011

Allerdings sind sie häufig zu komplex, um sie vollständig zu beschreiben. Doch Wissenschaftler vom Bernstein Center der Universität Freiburg konnten nun zeigen, wie sich globale Gesetzmäßigkeiten komplexer Netzwerke in lokalen statistischen Eigenschaften niederschlagen, die viel leichter untersucht werden können. Bei ihrer Forschung profitierten die Freiburger von den Hochleistungsrechnern des Bernstein Centers, die normalerweise eingesetzt werden, um die Aktivität von Nervenzellen im Gehirn zu simulieren.

In einem Artikel der Fachzeitschrift PLoS ONE beschreiben Stefano Cardanobile und seine Kollegen, wie sie 200.000 im Computer erzeugte Netzwerke analysiert haben – mit Modellen, die Wissenschaftlerinnen und Wissenschaftler nutzen, um in der Natur vorkommende Netzwerke zu verstehen. Die Modelle verglichen die Forscher mit gut erforschten Netzwerken: dem Stoffwechsel eines Bakteriums, den Beziehungen zwischen Synonymen in einem Wörterbuch und dem Nervennetz eines Wurms. Damit konnten sie jene Modelle bestimmen, die die Eigenschaften realer Netzwerke am besten vorhersagen. Diese Einsichten können Wissenschaftlern unterschiedlichster Disziplinen helfen, das richtige Modell heranzuziehen.
Vor allem konnten die Freiburger aber zeigen, dass es möglich ist, globale Eigenschaften komplexer Netzwerke aus statistischen Daten abzuleiten, die über lokale Merkmale vorliegen. Somit erkennen sie auch dann wichtige Eigenschaften von Netzwerken, wenn diese nicht in Gänze analysiert werden können – was bei großen Systemen, etwa sozialen Kontakten zwischen Menschen oder den Verbindungen im Gehirn, unmöglich wäre. Daher leistet die Studie, so die Autoren, einen wichtigen Beitrag zum besseren Verständnis komplexer Netzwerke.

Kontakt:
Prof. Dr. Stefan Rotter
Bernstein Center Freiburg
Tel.: 0761/203-9316
Fax: 0761/203-9559
E-Mail: stefan.rotter@biologie.uni-freiburg.de
http://dx.plos.org/10.1371/journal.pone.0037911 - Originalveröffentlichung in PLoS ONE: S. Cardanobile, V. Pernice, M. Deger und S. Rotter (2012) Inferring general relations between network characteristics from specific network ensembles.

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit

Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns

25.09.2017 | Medizin Gesundheit

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungsnachrichten