Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Kompass für Pollenschläuche - Forscher überwinden Barrieren für die Kreuzung von Pflanzenarten

25.05.2012
Seit Jahrzehnten ist es ein Traum von Biologen und Pflanzenzüchtern auf der ganzen Welt: Der Genpool an Nutzpflanzen ließe sich wesentlich erweitern und verbessern, wenn die bestehenden Barrieren für die Kreuzung von Pflanzenarten überwunden werden könnten. Davon würde vor allem die Agrarwirtschaft profitieren.

Allerdings konnten die molekularen Grundlagen vieler Kreuzungsbarrieren und die Vorgänge bei der doppelten Befruchtung von Blütenpflanzen lange Zeit nicht untersucht werden. Viele Kreuzungsversuche schlugen fehl, weil es nicht gelang, das Wachstum des männlichen Pollenschlauchs (der die Spermazellen transportiert) zum weiblichen Eiapparat anzuregen.


Arabidopsis-Samenanlagen: Hilfszellen (grün hinterlegt) sondern das Protein ZmEA1 ab und können so den Mais-Pollenschlauch anlocken und dessen Wachstum bis an die Mikopylaröffnung der Samenanlage (links im Bild) steuern. Foto: Universität Regensburg

Ein Forschungsteam der Universität Regensburg unter der Leitung von Dr. Mihaela-Luiza Márton und Prof. Dr. Thomas Dresselhaus vom Biochemie-Zentrum Regensburg (BZR) schaffte jetzt einen bedeutenden Durchbruch. Die Forscher programmierten den Eiapparat der Acker-Schmalwand (Arabidopsis thaliana) um und versetzten deren Samenanlagen in die Lage, Pollenschläuche der Nutzpflanzen Mais anzulocken. Darauf aufbauend sind künftig Kreuzungen von Pflanzenarten möglich, die bislang nicht miteinander kombinierbar waren.

Damit eine Blütenpflanze befruchtet wird, muss zunächst der Pollen auf die Narbe gelangen, die mit Griffel und Fruchtknoten den weiblichen Blütenanteil – den sogenannten Stempel – bildet. Von der Narbe ist es aber noch ein verhältnismäßig langer Weg bis zu den Eiapparaten der Pflanze, die oft tief eingebettet und geschützt in den Samenanlagen der Blüte liegen. Erschwerend kommt hinzu, dass die Spermazellen von Blütenzellen – im Gegensatz zu Spermazellen von Tieren – unbeweglich sind. Sie benötigen den Transport über einen Pollenschlauch zum Eiapparat. Der Pollenschlauch mit zwei Spermazellen an der Spitze wächst durch die verschiedenen Gewebe der weiblichen Blüte. Ziel ist das Zentrum des weiblichen Fruchtknotens mit den Samenanlagen. Hier verschmelzen anschließend jeweils zwei weibliche und zwei männliche Keimzellen, wodurch eine doppelte Befruchtung ermöglicht wird. Dabei entstehen ein Embryo und ein Nährgewebe (das Endosperm), das die pflanzlichen Nährstoffe enthält und später bei den wichtigsten Nutzpflanzen – den Gräsern – einen Großteil des Samens ausmacht.
Die doppelte Befruchtung ist das Markenzeichen aller Blütenpflanzen und damit der meisten Nutzpflanzen. Hier spielen eine ganze Reihe von Faktoren eine wichtige Rolle. So sind beispielsweise für die Keimung und das Wachstum der Pollenschläuche zahlreiche Akteure auf molekularer Ebene verantwortlich, wie genetische Untersuchungen in den letzten Jahren gezeigt haben. Márton und Dresselhaus konnten bereits in einer früheren Arbeit nachweisen, dass das kleine Protein ZmEA1 für den letzten Schritt der Pollenschlauch-Wanderung durch die weiblichen Blütenteile erforderlich ist.

Im Rahmen ihrer neuen Untersuchungen wollten die beiden Biologen prüfen, ob die Eigenschaften des Proteins auch auf andere Pflanzenarten übertragbar sind. Die Regensburger Biologen griffen dafür auf die Acker-Schmalwand (Arabidopsis thaliana) zurück, die unter anderem aufgrund ihrer Größe und relativ kurzen Generationszeit zu den beliebtesten Modellpflanzen gehört. Ihr Lebenszyklus von der Keimung bis zum fertigen Samen liegt bei nur sechs bis acht Wochen, so dass Wissenschaftler in einer überschaubaren Zeit das Ergebnis von Kreuzungsexperimenten untersuchen können. Die Forscher brachten das Protein ZmEA1 in den Eiapparat der Acker-Schmalwand ein und konnten auf diese Weise in vitro das Wachstum und die Wachstumsrichtung von Mais-Pollenschläuchen kontrollieren.

Die Versuche des Forscherteams zeigen erstmals, dass es grundsätzlich möglich ist, sogar Kreuzungsbarrieren unterschiedlichster Pflanzenarten zu überwinden. Zunächst ist angedacht, das Protein auch in die Eiapparate anderer Nutzpflanzen einzubringen, um auf diese Weise neuartige Kreuzungen zu ermöglichen und so den Genpool von Nutzpflanzen zu erweitern. Es gilt darüber hinaus, weitere molekulare Schalter zu identifizieren, um alle Kreuzungsbarrieren auf dem Weg des Pollenschlauches zum Eiapparat zu überwinden.

Die Untersuchungen der Regensburger Biologen sind gestern in der Online-Ausgabe der renommierten Fachzeitschrift „Current Biology“ veröffentlicht worden (DOI: 10.1016/j.cub.2012.04.061).

Ansprechpartner für Medienvertreter:
Dr. Mihaela-Luiza Márton
Universität Regensburg
Biochemie-Zentrum Regensburg
Tel.: 0941 943-3020
Mihaela.Marton@biologie.uni-regensburg.de

oder

Prof. Dr. Thomas Dresselhaus
Universität Regensburg
Biochemie-Zentrum Regensburg
Tel.: 0941 943-3016
Thomas.Dresselhaus@biologie.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise