Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kommunikation per Kalziumwelle

22.03.2018

Ohne das Hormon Auxin könnten Pflanzen nicht wachsen und sich entwickeln. Wie es diese Prozesse in Gang setzt, war bislang ungeklärt. Wissenschaftler der Universität Würzburg haben jetzt zentrale Details entschlüsselt.

Das Pflanzenhormon Auxin hat – nach allem, was derzeit bekannt ist – Einfluss auf sämtliche Aspekte des Wachstums und der Entwicklung von Pflanzen. Es lässt das Getreide von der Keimung der Samen bis hin zur Erntereife gedeihen, die Bäume in den Himmel wachsen und Datteln zu süßen Früchten reifen.


siehe Pressemitteilung

Abbildungen: Dirk Becker

Auxin ist damit maßgeblich für die Entstehung der pflanzlichen Biomasse auf der Erde verantwortlich. Das erklärt auch seinen Namen: Der leitet sich von dem Griechischen auxánō ab, was so viel bedeutet wie „ich wachse“.

Aus diesem Grund haben Agrar- und Forstwissenschaftler von je her versucht, den Wirkmechanismus des Wachstumshormons zu verstehen und ihre Erkenntnisse wirtschaftlich nutzbar zu machen. Doch obwohl die chemische Struktur von Auxin bereits in den 1930iger-Jahren identifiziert wurde, ist die Frage, wie das Hormon zu den Zielzellen gelangt und wie es dort seine Wirkung entfaltet, bis heute noch nicht vollständig geklärt.

Bei der Suche nach einer Antwort auf diese Fragen haben Würzburger Pflanzenforscher um den Biophysiker Professor Rainer Hedrich jetzt einen Durchbruch erzielt. In der aktuellen Ausgabe der Fachzeitschrift Nature Communications stellen sie ihre Ergebnisse vor.

Mikroelektroden entschlüsseln den Transportmechanismus

Chemisch betrachtet, handelt es sich bei Auxin um eine vergleichsweise einfache Substanz – in der Fachsprache Indolyl-3-Essigsäure, oder kurz IAA, genannt –, die sich aus der aromatischen Aminosäure Tryptophan herleitet. Pflanzen produzieren das Hormon beispielsweise in der Spross-Spitze und leiten es dann zu den Zielzellen weiter, zu denen auch die Zellen der Wurzel gehören.

„Wir haben für unsere neueste Studie die Wurzelhaarzellen unter die Lupe genommen, deren Entwicklung aus polar auswachsenden Zellen vom Auxin-Import anhängig ist“, schildert Rainer Hedrich den Ausgangspunkt der Würzburger Forschung. Julian Dindas, Doktorand an Hedrichs Lehrstuhl, hat dabei mit Hilfe von Mikroelektroden, die die elektrische Spannung der Zellmembran des Wurzelhaars registrieren – das sogenannte Membranpotential, die frühen Antworten der Zelle auf einen Hormonpuls untersucht.

Hilfe aus Freiburg und Nottingham

Das Ergebnis: Abhängig von der IAA-Konzentration und der Dauer der Anwendung, depolarisierte das Membranpotential, das heißt: Die negativ geladene Indolyl-Essigsäure setzte einen Prozess in Gang, in dessen Folge positiv geladene Ionen ins Zellinnere gelangten. Dieser Prozess war umso stärker, je mehr positive Ionen auf der Zellaußenseite vorlagen. „Das legte die Vermutung nahe, dass das negative geladene Hormonmolekül Indolyl-Essigsäure zusammen mit einem Überschuss an positiven Ionen in die Wurzelhaarzelle aufgenommen wird“, so Hedrich.

Dieses Messergebnis zog die nächste Frage automatisch nach sich: Welcher Transporter in der Zellmembran ist dafür verantwortlich? Die Frage war in Zusammenarbeit mit den Auxin-Genetikern Professor Klaus Palme aus Freiburg und Professor Malcolm Bennett aus Nottingham schnell beantwortet: „Aus einer Kollektion von Mutanten der Modellpflanze Arabidopsis mit untypischer Reaktion auf die Gabe von Auxin zeigte eine spezielle Mutante keine IAA-vermittelte Wurzelhaar-Depolarisation mehr“, so Hedrich.

Ein neuer Signalweg für ein ‚altes‘ Hormon

Zusätzlich zeigte diese Mutante auch keinen temporären Anstieg des zellulären Kalzium-Spiegels, wie er sich normalerweise nach einer IAA-induzierten Depolarisation beobachten lässt. „Damit war klar, dass die Wurzelhaar-Antwort auf Auxin von komplexer Natur und möglicherweise das Resultat einer Signalkette ist“, so der Pflanzenforscher.
Tatsächlich legten Untersuchungen weiterer Auxin-Mutanten nahe, dass sowohl ein spezieller Rezeptor-Komplex als auch ein Kalzium-Kanal mit von der Partie sein müssten. Fehlte eine Komponente dieses Dreiklangs aus Akteuren, Auxin-Transporter, Rezeptor oder Kalzium-Kanal, blieb die zellulare Antwort aus. „Dieses Verhalten konnten wir so interpretieren, dass IAA in der Zelle den Rezeptor dazu anregt, den Kalzium-Kanal zu öffnen, und damit der Zelle den Auftrag gibt, Zellteilung und Streckung dem Hormonsignal anzupassen“, erklärt Hedrich.

Ein Signal wandert durch die Wurzel

Wie Julian Dindas weiterhin durch eine direkte Mikro-Injektion von IAA in das Wurzelhaar nachweisen konnte, sendet eine mit Auxin behandelte Zelle nicht nur ein Kalzium-Signal aus. Vielmehr setzt sie eine sich selbst verstärkende Kalzium-Welle in Gang. Fluoreszenzmikroskopische Untersuchungen zeigten ihm, dass diese Kalzium-Welle bereits innerhalb weniger Minuten die Wurzelspitze erreicht.

Dort befindet sich nicht nur die Stammzellnische der Wurzel; dort sitzen auch Sensoren für ein Auxin-abhängiges Wachstum der Pflanze, das sich an der Schwerkraft orientiert. Man kann dies beispielsweise an Bäumen beobachten, die von einem Sturm umgelegt wurden. „Mit der Zeit schaffen es diese Bäume, ihre Wurzel wieder im Boden zu verankern und den Spross wieder aufzurichten“, so Hedrich. Das mache die Angelegenheit für die Wissenschaftler besonders spannend, „denn an dieser Schaltstelle wird über das Schicksal sich differenzierender Zellen und somit über die Wurzelarchitektur bestimmt.“

Dass unterschiedliche Auxin-Konzentrationen zwischen Zellen und deren Umgebung eine Schlüsselrolle bei diesen Differenzierungsvorgängen einnehmen, ist der Wissenschaft bekannt. Bisher sei dieser Aspekt allerdings eher vor dem Hintergrund der Gen-regulatorischen Wirkung des Hormons untersucht worden, so die Würzburger Pflanzenforscher. Über die physiologische Rolle des Auxin-Signalwegs in der Zellmembran sei hingegen nahezu nichts bekannt gewesen.

„Unsere Untersuchungen deuten darauf hin, dass lokale Auxin-Signale mit Hilfe von Kalzium-Wellen über lange Strecken kommuniziert werden können, um in weit entfernt lokalisierten Zielzellen ebenfalls ein Auxin-Signal zu generieren“, so Hedrich. Wie dies auf molekularer Ebene bewerkstelligt wird und wie die von den Würzburgern identifizierten Proteine des „Auxin-Signalosoms“ in dieses Szenario eingreifen, ist Gegenstand weiterer Experimente.

AUX1-mediated root hair auxin influx governs SCFTIR1/AFB -type Ca2+ signaling; Julian Dindas, Sönke Scherzer, M. Rob G. Roelfsema, Katharina von Meyer, Heike M. Müller, K. A. S. Al-Rasheid, Klaus Palme, Petra Dietrich, Dirk Becker, Malcolm J. Bennett & Rainer Hedrich; Nature Communications; DOI: 10.1038/s41467-018-03582-5

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Biozentrum der Universität Würzburg, T +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Bildunterschrift

(A) Pflanzen, deren Wachstumsrichtung im Experiment von vertikal nach horizontal geändert wird, müssen sich neu im Raum orientieren. Dabei spielt das Hormon Auxin eine wichtige Rolle. In Wildtyp-Pflanzen wächst zum Beispiel die Wurzelspitze sofort wieder in Richtung des Schwerkraftreizes - dies ist bereits nach sechs Stunden deutlich zu sehen (obere Pflanze, gelber Pfeil). Eine Mutante, in der das Gen für den Auxintransporter AUX1 defekt ist, kann den Schwerkraftreiz nicht in ‚korrektes‘ Wachstum umsetzen. Die Wurzelspitze ist orientierungslos (untere Pflanze).

(B) Mit Hilfe elektrophysiologischer Methoden konnte erstmals der Auxintransport in Epidermiszellen der Wurzel gemessen werden. Der Cartoon zeigt einen drei Tage alten Arabidopsis-Keimling. Die Ausschnittsvergrößerung zeigt den Einstich der Messelektrode in eine noch junge Wurzelhaarzelle. Eine Mikropipette ermöglicht die dosierte Applikation des Hormons.

(C) Die Applikation von Auxin führt zur Aktivierung des Protonen-gekoppelten Transports von Auxin und dadurch zu einer Depolarisation des Membranpotentials der Wurzelhaarzelle (schwarze Spur). Mutanten, denen der Auxin-Transporter (rote Spur), der Auxin-Rezeptor (grüne Spur) oder ein Calcium-Ionenkanal (blaue Spur) fehlen, zeigen diese Antwort nicht. (Fotos & Grafiken: Dirk Becker)

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Metalle verbinden ohne Schweißen

23.04.2018 | HANNOVER MESSE

Revolutionär: Ein Algensaft deckt täglichen Vitamin-B12-Bedarf

23.04.2018 | Medizin Gesundheit

Wie zerfallen kleinste Bleiteilchen?

23.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics