Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoff zeigt Quanteneffekte

07.07.2017

Chemiker der Ruhr-Universität Bochum haben einen neuen Beleg dafür gefunden, dass sich Kohlenstoffatome nicht nur wie Teilchen, sondern auch wie Wellen verhalten können. Diese quantenmechanische Eigenschaft ist für leichte Teilchen wie Elektronen oder Wasserstoffatome hinreichend bekannt. Nur selten haben Forscher hingegen den Welle-Teilchen-Dualismus für schwere Atome wie Kohlenstoff beobachtet. Das Team um Prof. Dr. Wolfram Sander und Tim Schleif vom Lehrstuhl für Organische Chemie II berichtet gemeinsam mit Prof. Dr. Weston Thatcher Borden, University of North Texas, in der Zeitschrift Angewandte Chemie.

„Unser Ergebnis ist eines von wenigen Beispielen dafür, dass Kohlenstoffatome Quanteneffekte zeigen können“, sagt Sander. Konkret beobachteten die Forscher, dass Kohlenstoffatome tunneln können. Sie überwinden also eine energetische Barriere, obwohl sie eigentlich nicht genug Energie besitzen, um das zu tun.


Sie waren maßgeblich daran beteiligt, das ungewöhnliche Verhalten des Kohlenstoffs nachzuweisen: Tim Schleif (links) und Joel Mieres Perez (rechts)

© RUB, Marquard

Selten beobachtet für schwere Teilchen

Wolfram Sander veranschaulicht das Paradoxon: „Es ist, als würde ein Tiger seinen Käfig verlassen, ohne über den Zaun zu springen, der viel zu hoch für ihn ist. Er kommt aber trotzdem raus.“ Das kann nur gelingen, wenn er sich wie eine Welle verhält, aber nicht, wenn er sich wie ein Teilchen verhält. Die Wahrscheinlichkeit, mit der ein Objekt in der Lage ist zu tunneln, hängt von seiner Masse ab. Daher kann das Phänomen zum Beispiel für die leichten Elektronen deutlich einfacher beobachtet werden als für das relativ schwere Kohlenstoffatom.

Die Forscher untersuchten die Tunnelreaktion anhand der Cope-Umlagerung, einer seit fast 80 Jahren bekannten chemischen Reaktion. Das Ausgangsmolekül für die Reaktion, eine Kohlenwasserstoffverbindung, ist dabei identisch mit dem Produktmolekül. Vor und nach der Reaktion liegt also die gleiche chemische Verbindung vor. Allerdings verknüpfen sich die Kohlenstoffatome in dem Prozess neu; die Bindungen in dem Molekül verlagern sich also.

In ihrem Experiment markierten die Bochumer ein Kohlenstoffatom des Ausgangsmoleküls: Sie ersetzten eines der daran gebundenen Wasserstoffatome durch das Wasserstoffisotop Deuterium, eine schwerere Variante des Wasserstoffs. Moleküle vor und nach der Cope-Umlagerung unterschieden sich in der Verteilung des Deuteriums. Aufgrund dieser unterschiedlichen Verteilungen besaßen die beiden Molekülformen leicht unterschiedliche Energien.

Reaktion dürfte eigentlich nicht stattfinden

Bei Raumtemperatur wirkt sich dieser Unterschied nicht aus; aufgrund der in der Umgebung reichlich vorhandenen Wärmeenergie liegen beide Formen gleich häufig vor. Bei sehr tiefen Temperaturen unter zehn Kelvin wird allerdings eine Molekülform aufgrund des Energieunterschieds stark bevorzugt. Beim Übergang von Raumtemperatur zu extrem tiefen Temperaturen müsste sich das Gleichgewicht von einer gleichhäufigen Verteilung der beiden Formen zu einer ungleichen Verteilung verschieben.

Diese Verschiebung kann aber unmöglich auf klassischem Weg stattfinden – denn für die Umlagerung von einer in die andere Form müsste eine Energiebarriere überwunden werden, wofür weder das Molekül selbst die Energie besitzt noch die kalte Umgebung diese liefern kann. Obwohl sich das neue Gleichgewicht auf klassischem Wege nicht einstellen dürfte, konnten die Forscher es trotzdem im Experiment nachweisen. Ihr Fazit: Die Cope-Umlagerung bei extrem tiefen Temperaturen lässt sich nur durch einen Tunneleffekt erklären. Damit lieferten sie experimentelle Belege für eine Voraussage, die Weston Borden vor mehr als fünf Jahren aufgrund theoretischer Studien getätigt hatte.

Lösungsmittel beeinflussen Fähigkeit zu tunneln

An der Ruhr-Universität forscht Wolfram Sander im Exzellenzcluster Ruhr Explores Solvation und beschäftigt sich dort mit den Wechselwirkungen von Lösungsmitteln und gelösten Molekülen. „Es ist bekannt, dass Lösungsmittel die Fähigkeit zu tunneln beeinflussen“, sagt der Chemiker. „Aber es ist bislang völlig unverstanden, wie sie das tun.“

Förderung

Die Deutsche Forschungsgemeinschaft unterstütze die Arbeiten im Rahmen des Exzellenzclusters Ruhr Explores Solvation (EXC 1069), der an der Ruhr-Universität Bochum angesiedelt ist. Weitere finanzielle Mittel für die University of North Texas kamen von der Robert A. Welch Foundation (Grant B0027).

Originalveröffentlichung

Tim Schleif, Joel Mieres-Perez, Stefan Henkel, Melanie Ertelt, Weston Thatcher Borden, Wolfram Sander: The Cope rearrangement of 1,5-Dimethylsemibullvalene-2(4)-d1: Experimental evidence for heavy-atom tunneling, in: Angewandte Chemie, 2017, DOI: 10.1002/ange.201704787, International Edition: 10.1002/anie.201704787

Pressekontakt

Prof. Dr. Wolfram Sander
Lehrstuhl für Organische Chemie II
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 24593
E-Mail: oc2@rub.de


Exzellenzcluster Resolv
https://www.solvation.de/

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics