Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlendioxid unter Druck bildet neue Materialien: RUB-Chemiker untersuchen CO2 im virtuellen Labor

25.03.2009
PNAS: Bindungseigenschaften ändern sich abrupt

Kohlendioxid ist in Gasform ein wichtiger Bestandteil der. Unter bestimmten Druck- und Temperaturbedingungen zeigen die wohlbekannten Moleküle allerdings ganz andere Seiten.

So bilden sich zum Beispiel bei hohem Druck Festkörper mit geordneter Molekülstruktur aus. Dieses Verhalten studierten Chemiker aus Bochum, Kanada, Italien, der Slovakei und den USA gemeinsam im virtuellen Labor und entdeckten Festkörper mit interessanten physikalischen Eigenschaften wie etwa "Superhärte".

Die Forscher um Dr. Jian Sun, der zurzeit als Humboldt-Stipendiat am Lehrstuhl für Theoretische Chemie (Prof. Dr. Dominik Marx) arbeitet, berichten in der aktuellen Ausgabe der Proceedings of the National Academy of Science (PNAS).

Trockeneis und superharte Struktur

Bei Atmosphärendruck und normalen Temperaturen liegt Kohlendioxid als Gas vor. Bei hohem Druck allerdings kann Kohlendioxid fest werden. In diesem Zustand, als molekularer Kristall, ist es zumeist als "Trockeneis" bekannt, das zum Beispiel bei der Lebensmittelproduktion und -lagerung, als künstlicher Nebel auf der Bühne und als künstlicher Regen zum Einsatz kommt. Für die Forscher viel interessanter ist aber das Verhalten von Kohlendioxid bei steigenden Drücken und unterschiedlichen Temperaturen. Unter diesen Bedingungen verändern sich die Interaktionen zwischen den einzelnen Molekülen dramatisch, was zu verschiedenen Polymer-Kristallstrukturen führt, die interessante physikalische Eigenschaften haben, etwa "superhart" sind. Daher ist Kohlendioxid in den letzten zehn Jahren zum "hot Topic" der internationalen Forschung geworden.

Computersimulation wirft neues Licht auf experimentelle Ergebnisse

Einer internationalen Forschergruppe ist es jetzt gelungen, neue Einsichten in dieses Forschungsfeld zu gewinnen. Sie nutzten dazu eine neuartige Computersimulation ("metadynamics") in Kombination mit quantenmechanischen Berechnungen. So fanden sie heraus, dass sich ein molekularer Festkörper namens CO2-II bei 60 GPa (1 GPa = etwa 10.000 Atmosphären) und 600 Kelvin (ca. 327°C) in eine geschichtete Polymerstruktur verwandelt. Die gute Übereinstimmung ihrer Berechnungen mit der Röntgenstrukturanalyse und anderen experimentellen Daten führte die Forscher außerdem zu neuen Interpretationen älterer experimenteller Ergebnisse. So nehmen sie an, dass die kürzlich experimentell entdeckte dichte Phase VI, die sie zunächst für eine ungeordnete Struktur gehalten hatten, statt dessen das Ergebnis einer unvollständigen Umwandlung der molekularen Phase in die geschichtete Polymerstruktur ist. Zusätzlich konnten sie voraussagen, dass eine neue, Kristobalit-artige CO2-Form wie sie in Kieselerde zu finden ist, über einen Zwischenzustand bei 80 GPa und Temperaturen unter Raumtemperatur aus CO2-III gebildet wird. Defekte im Kristall werden mit steigenden Temperaturen häufiger. Bei Temperaturen über Raumtemperatur nimmt CO2 schließlich amorphe Formen an wie auch schon in früheren Experimenten beobachtet wurde.

Unbekannte Umwandlungsprozesse enthüllt

Diese Ergebnisse aus molekulardynamischen Computersimulationen enthüllen bislang unbekannte mikroskopische Umwandlungsprozesse und zeigen die Verwandlung eines molekularen Festkörpers, in dem es nur intra-molekulare Bindungen gibt, in eine Polymerstruktur. Die Umwandlungen finden bei Drücken statt, die natürlicherweise im Erdmantel vorkommen, wo große Mengen oxidierten Kohlenstoffs vorliegen, entweder als Karbonate oder in flüssiger Form. Die starken und abrupten Veränderungen der Bindungseigenschaften von CO2 sehen die Forscher in ihrer Arbeit als ein Hinweis auf mögliche Unregelmäßigkeiten der Kohlenstoffchemie im Erdmantel.

Titelaufnahme

Jian Sun, Dennis D. Klug, Roman Martonak, Javier Antonio Montoya, Mal-Soon Lee, Sandro Scandolo and Erio Tosatti: High-pressure polymeric phases of carbon dioxide. In: PNAS early edition, http://www.pnas.org_cgi_doi_10.1073_pnas.0812624106

Weitere Informationen

Dr. Jian Sun, Lehrstuhl für Theoretische Chemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-22121, E-Mail: jian.sun@theochem.ruhr-uni-bochum.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://www.pnas.org_cgi_doi_10.1073_pnas.0812624106

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie