Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlendioxid als Rohstoff für die Umwandlung von Solarstrom in wertvolle chemische Produkte

06.11.2015

Drei neue Verbundprojekte unter Leitung des TU-Fachgebietes „Elektrochemische Katalyse und Materialien“ von Prof. Dr. Peter Strasser untersuchen Grundlagen und Anwendungen von elektrochemischen Katalyseprozessen

Auf dem volkswirtschaftlich wichtigen Gebiet der elektrochemischen Katalyseprozesse wurden drei neue Verbundprojekte an der TU Berlin bewilligt. Sprecher aller drei Vorhaben ist Prof. Dr. Peter Strasser, Leiter des Fachgebietes „Elektrochemische Katalyse und Materialien“ am TU-Institut für Chemie.

In allen drei Projekten werden die chemischen Grundlagen und anwendungsrelevanten Aspekte der direkten elektrochemischen Umwandlung von Wasser und Kohlendioxid mit Hilfe von Elektrizität in wertvolle chemische Molekülbausteine für die chemische Industrie oder in Brennstoffe erforscht. Gefördert werden die drei Projekte an der TU Berlin mit insgesamt 2 Millionen Euro für drei Jahre.

Das erste Verbundprojekt „Electrochemical CO2 conversion“ untersucht die kürzlich am Fachgebiet von Prof. Dr. Peter Strasser entdeckten Kohlenstoffkatalysatoren für die direkte Umwandlung von Kohlendioxid in Kohlenwasserstoffe (Angewandte Chemie 2015 doi: 10.1002/anie.201502099).

Da bisher Gold und Silber die bevorzugten Katalysatoren für diese Reaktion waren, ist die Erkenntnis, dass kohlenstoffbasierte Materialien Kohlendioxid ebenso effizient katalysieren, von größter Bedeutung. Die Forschungen finden im Rahmen des renommierten Flagship-Programms „Climate-KIC/EnCO2re“ der Europäischen Union statt.

Die TU-Chemiker arbeiten mit Wissenschaftlerinnen und Wissenschaftlern der Ruhr-Universität Bochum und der Universität Kopenhagen sowie mit der Firma Covestro (ehemals Bayer Material Science) zusammen. Fördersumme für das TU-Fachgebiet: 400.000 Euro.

Das zweite Verbundprojekt befasst sich mit der direkten Umwandlung von Kohlendioxid zu Kohlenwasserstoffen auf nanostrukturierten Metallkatalysatoren. Dazu werden neue chemische Analysestrategien, sogenannte „operando“-Methoden, entwickelt und eingesetzt.

Sie erlauben eine direkte Beobachtung der reagierenden Moleküle während der chemischen Umwandlung. Gefördert wird es vom Bundesministerium für Forschung und Bildung (BMBF). Partner sind die Ruhr-Universität Bochum und die Freie Universität Berlin. Fördersumme für das TU-Fachgebiet: 1,2 Millionen Euro.

Das dritte Verbundprojekt beschäftigt sich mit dem molekularen Verständnis der elektrokatalytischen Prozesse an der Grenzfläche zwischen Flüssigkeit und festem Katalysator in Photoelektrochemischen Zellen (PEZ). Im Vordergrund steht hier die elektrochemische Spaltung von Wasser zur Erzeugung von Wasserstoff und von anderen chemischen Zwischenprodukten.

Finanziert wird es von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Schwerpunktprogramms SPP1613 „Fuels Produced Regeneratively Through Light-Driven Water Splitting“. Hier kooperiert das Fachgebiet von Prof. Dr. Peter Strasser mit dem Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin-Dahlem. Fördersumme für das TU-Fachgebiet: 400.000 Euro.

Bei der Erforschung der chemischen Grundlagen und anwendungsrelevanten Aspekten der elektrochemischen Umwandlung von Wasser und Kohlendioxid mit Hilfe von Elektrizität in chemische Molekülbausteine für die chemische Industrie oder in Brennstoffe kommen zwei Verfahren in Betracht: Das eine nutzt Photovoltaik- oder Windkraftanlagen zur Umwandlung von Sonnenlicht in Strom.

Dieser wird anschließend in neuartigen Vorrichtungen (Elektrolyseuren) mit einem elektrochemischen Katalysatormaterial zusammen mit Wasser und Kohlendioxid direkt zu Wasserstoff, Methan, Ethylene, Methanol, Ethanol und einer Vielzahl weiterer chemischer Produkte umgewandelt. Das andere Verfahren nutzt die Kombination aus einem Halbleiter wie Silizium und einem Elektrokatalysatormaterial in einer integrierten „Photoelektrochemischen Zelle (PEZ)“, die bei Sonnenbestrahlung ebenfalls aus Kohlendioxid und Wasser chemische Produkte oder Brennstoffe liefert. Die PEZ-Technologie ist kompakter als die Photovoltaik-Elektrolyseur-Technologie, allerdings ist die Integration von Sonnenlichtnutzung und elektrochemischer Katalyse eine große wissenschaftliche und technische Herausforderung hinsichtlich der Leistungsfähigkeit und der Lebensdauer der Photoelektrochemischen Zellen.

Über die atomaren Details, wie die elektrochemischen Reaktionen an der Oberfläche der Katalysatoren molekular ablaufen, ist sehr wenig bekannt. Ebenso weiß man kaum etwas, wie die atomare Zusammensetzung und Struktur des Katalysators die Art und Menge der entstehenden Produkte beeinflussen kann. Das Ziel aller drei Verbundprojekte ist deshalb, die elektrochemischen Prozesse anhand verschiedener Katalysatorklassen grundlegend zu verstehen und Methoden zu entwickeln, um die chemischen Prozesse während der Reaktion zu studieren.

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Peter Strasser
TU Berlin
Fachgebiet Elektrochemische Katalyse und Materialien
Tel.: 030/314-29542
E-Mail: pstrasser@tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie