Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Körperwärme statt Körperfett: Wie hedgehog Mäuse schlank macht

08.01.2010
Forscher am Institut für Molekulare Biotechnologie und an der Medizinischen Universität Wien haben einen Stoffwechselweg aufgeklärt, der die Bildung von Fettzellen reguliert.

Durch Eingriffe in den Signalweg kann bei Mäusen die Bildung von weißem Fett unterdrückt werden. Das Wissenschaftsmagazin Cell berichtet in seiner aktuellen Ausgabe über die folgenreichen Erkenntnisse.

Können Fliegen dick werden? Die Antwort ist ja. Fliegen besitzen eine Art Fettgewebe und sind uns auch sonst recht ähnlich, teilen sie doch etwa 70 Prozent ihrer genetischen Ausstattung mit dem Menschen. Dies ist einer der Gründe, warum Molekularbiologen das Insekt mit Vorliebe als Modell für Genstudien heranziehen.

Am Wiener Institut für Molekulare Biotechnologie (IMBA) der österreichischen Akademie der Wissenschaften gibt es zu diesem Zweck einen ganz besonderen Schatz. Gemeinsam mit dem Partnerinstitut IMP unterhält das IMBA eine weltweit einzigartige Sammlung von über zwanzigtausend genetisch veränderten Fliegenstämmen der Gattung Drosophila. Eine ausgeklügelte Technik erlaubt es, jedes beliebige Gen in jedem gewünschten Gewebe der Tiere auf seine Funktion hin zu untersuchen.

Die Suche nach den Fettgenen

Andrew Pospisilik und Daniel Schramek aus der Gruppe von IMBA-Direktor Josef Penninger nutzten die Sammlung, um gezielt nach Genen zu suchen, die am Fettstoffwechsel beteiligt sind. Ein Screen über das komplette Genom - der erste dieser Art - lieferte 500 Kandidatengene, die in Fettgewebe, Gehirn-, Muskel- oder Leberzellen aktiv sind und in den Fettmetabolismus eingreifen.

Als aussichtsreichsten Treffer identifizierten die Forscher ein Gen mit dem Namen hedgehog, dessen Aktivität sich beim erwachsenen Tier nur im Fettgewebe bemerkbar macht. Eine Überraschung für den Physiologen Andrew Pospisilik, doch für Entwicklungsbiologen ist hedgehog ein alter Bekannter. Das Gen steuert wichtige Entwicklungsprozesse im Embryo.

Vom guten und vom schlechten Fett

Um die Wirkungsweise des hedgehog-Signalwegs im Detail zu untersuchen, mussten die IMBA-Forscher den Modellorganismus wechseln. Fliegen bezitzen zwar Fettgewebe, doch es fehlt ihnen eine für höhrere Tiere wichtige Differenzierung. Der Säugetierkörper weist neben mehr oder weniger reichlich weißem Fett auch eine kleinere Menge an braunem Fett auf, relativ viel davon findet sich beim Neugeborenen. Braune Fettzellen sind durch ihre sehr zahlreichen Mitochondrien imstande, Nahrungsfett zu verbrennen und direkt in Wärme umzuwandeln. Weißes Fettgewebe dient in erster Linie als - oft unerwünschter - Fettspeicher.

Um den Verhältnissen beim Menschen möglichst nahe zu kommen, studierte Andrew Pospisilik die Funktion von hedgehog in kultivierten Mauszellen. In enger Zusammenarbeit mit Harald Esterbauer von der Medizinischen Universität Wien gelang ihm der Nachweis, dass die von hedgehog ausgehende Signalkaskade die Bildung von weißen Fettzellen aus Vorläuferzellen unterdrückt.

Hedgehog macht Mäuse schlank

Komplexe Stoffwechselprozesse können jedoch nur in lebenden Organismen vollständig entschlüsselt werden. In Kooperation mit Chi-chung Hui von der Universität Toronto gelang es den Wiener Forschern, Mäuse genetisch so zu verändern, dass die Wirkung von hedgehog im Fettgewebe verstärkt wurde. Der Trick bestand darin, einen Hemmstoff von hedgehog namens Sufu gezielt auszuschalten. Der Effekt der Manipulation war nicht zu übersehen: die heranwachsenden Mäuse blieben auffällig schlank, waren dabei aber völlig gesund. Um die Fettverteilung sichtbar zu machen, schoben die Forscher die Tiere in einen Magnetresonanztomographen an der Wiener Universitätsklinik. Das überraschende Ergebnis der Untersuchung: die schlanken Mäuse besaßen praktisch kein weißes Fettgewebe, das braune Fett war jedoch normal entwickelt.

Weitere Untersuchungen, unter anderem durch Fritz Aberger an der Universität Salzburg, lieferten ein schlüssiges Bild der molekularen Vorgänge: der hedgehog-Signalweg hemmt tatsächlich die Bildung weißer Fettzellen, ohne dabei die Bildung brauner Fettzellen zu beeinflussen. Dieses verbleibende Gewebe ist auch imstande, die hormonaktive Rolle des Fettgewebes ausreichend zu erfüllen. Ganz ohne Fett würde die durch Insulin gesteuerte Regulation des Blutzuckers zusammenbrechen.

Für Andrew Pospisilik, der gemeinsam mit Harald Esterbauer das vom WWTF geförderte Projekt "Von der Fliege zum Menschen" leitet, ist die Entdeckung eine Sensation. "Fast alle bisher gefundenen Fett-Regulatoren beeinflussen weißes und braunes Fett gleichermaßen. Mit hedgehog haben wir eines der ersten Moleküle gefunden, das ganz gezielt nur weißes Fett reduziert."

Fett verbrennen statt Fett speichern?

Neben der Begeisterung über die grundlegenden Erkenntnisse schwingt auch die Hoffnung auf einen therapeutischen Nutzen der Entdeckung mit. Denkbar wäre, durch Aktivierung von hedgehog auch beim Menschen die Fettverteilung in Richtung braunes Fett zu verschieben. Das Potenzial einer möglichen medizinischen Anwendung ist jedenfalls enorm. Immerhin sind rund eine Milliarde Menschen übergewichtig, ein Drittel davon krankhaft adipös. Die Nahrungsenergie in Körperwärme zu verwandeln anstatt in Fettpolster ist gerade zu dieser Jahreszeit eine attraktive Vorstellung.

Die Zeitschrift Cell veröffentlicht die Arbeit der österreichischen Forscher in ihrer ersten Ausgabe des Jahres (Pospisilik et al., 8.Jänner 2010, DOI 10.1016/j.cell.2009.12.027). Die Publikation leitet auch eine Innovation in der online-Ausgabe der Zeitschrift ein. Sie wird als eine von zwei Artikeln im neuen, interaktiven Format erscheinen, als sogenannter "Article of the Future".

Über den Autor
Der 33-jährige Kanadier Andrew Pospisilik studierte an der University of Bristish Columbia (Vancouver), wo er 1998 sein Doktorat in Physiologie erhielt. Seit 2003 forscht er als Postdoktorand in der Arbeitsgruppe von Josef Penninger am IMBA. Seine Arbeit wird derzeit u.a. durch eine Förderung des WWFF unterstützt. Ab März 2010 wird Andrew Pospisilik eine Arbeitsgruppe für Epigenetik am Max Planck Institut in Freiburg leiten.
Über IMBA
Das IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften kombiniert Grundlagen- und angewandte Forschung auf dem Gebiet der Biomedizin. Interdisziplinär zusammengesetzte Forschergruppen bearbeiten funktionsgenetische Fragen, besonders in Zusammenhang mit der Krankheitsentstehung. Ziel ist es, das erworbene Wissen in die Entwicklung innovativer Ansätze zur Prävention, Diagnose und Therapie von Krankheiten einzubringen.
IMP-IMBA Research Center
Zwischen dem Forschungsinstitut für Molekulare Pathologie (IMP), das 1988 von Boehringer Ingelheim gegründet wurde, und dem seit 2003 operativen Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften (IMBA) wurde eine enge Forschungskooperation vereinbart. Unter dem Namen "IMP-IMBA Research Center" greifen die beiden Institute auf eine gemeinsame Infrastruktur im wissenschaftlichen und administrativen Bereich zu. Die beiden Institute beschäftigen insgesamt etwa 400 Mitarbeiter aus 30 Nationen und sind Mitglied des Campus Vienna Biocenter.
Link zur Forschungsgruppe von Josef Penninger:
http://www.imba.oeaw.ac.at/research/josef-penninger/
Kontakt:
Dr. Heidemarie Hurtl
IMP-IMBA Communications
Tel. +43 1 79730-3625
Mobil: +43 (0)664 8247910
heidemarie.hurtl@imba.oeaw.ac.at
Wissenschaftlicher Kontakt:
Dr. Andrew Pospisilik
Mobil: +43 699 11547544
andrew.pospisilik@imba.oeaw.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imba.oeaw.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit