Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Körpereigenen Notfallmechanismus für Blutbildung bei Infektionen entdeckt

11.04.2013
Ein deutsch-französisches Forscherteam in Marseille, Frankreich, hat einen Notfallmechanismus entdeckt, der den Körper bei einer schweren Infektion oder Entzündung rasch mit neuen weißen Blutzellen des Immunsystems versorgt.

Das Team von Dr. Michael Sieweke (Centre d`Immunologie de Marseille-Luminy, CIML, INSERM*, CNRS** und Max-Delbrück-Centrum, MDC) konnte zeigen, dass die blutbildenden Stammzellen, aus denen alle Blutzellen hervorgehen, sofort und direkt reagieren und Zellen produzieren, die vor Infektionen schützen (Nature doi: 10.1038/nature12026)***.


Unter der Einwirkung des Signalstoff M-CSF (engl. Macrophage colony-stimulating factor) werden Stammzellen grün und entwickeln sich zu Makrophagen, Zellen des Immunsystems, die Erreger bekämpfen und zerstören.


(Videobild/ Copyright: Labor Michael Sieweke, CIML)

Die Entdeckung könnte künftig Patienten mit Knochenmarktransplantationen helfen, den Aufbau des Immunsystems zu beschleunigen.

Blutzellen haben nur eine bestimmte Lebensdauer, wobei die verschiedenen Blutzelltypen unterschiedlich lang leben. Der Körper muss deshalb immer wieder rechtzeitig für Nachschub sorgen. Dafür sind die blutbildenden (hämatopoetischen) Stammzellen zuständig. Aus ihnen gehen alle Blutzellen hervor, sowohl die weißen Blutzellen des Immunsystems, als auch die roten Blutzellen, die den Sauerstoffbedarf des Organismus sicherstellen. „Bisher hat die Forschung angenommen, dass der Blutbildungsprozess nach dem Zufallsprinzip erfolgt und die Stammzellen dabei kaum auf ihre Umgebung reagieren. Das scheint bei Notfallsituationen aber anders zu sein“, erläutert der Stammzellforscher und Immunologe Dr. Sieweke.

Bei Blutverlust benötigt der Körper rasch rote Blutzellen, bei einer Infektion oder Entzündung bestimmte weiße Immunzellen. Dr. Noushine Mossadegh-Keller und Dr. Sandrine Sarrazin aus der Forschungsgruppe von Dr. Michael Sieweke haben entdeckt, dass der Signalstoff M-CSF (engl. Macrophage colony-stimulating factor), der während einer Infektion oder Entzündung freigesetzt wird, direkt auf die Stammzellen einwirkt und dort den Hauptschalter (PU.1) für einen ganz bestimmten Entwicklungsweg spezieller Blutzellen anschaltet. Damit kann der Körper direkt auf einen akuten Bedarf reagieren und schneller genau die weißen Blutzellen produzieren, die vor Infektionen schützen.

„Da wir jetzt den Botenstoff kennen, der das Startsignal für die Bildung der weißen Blutzellen, sprich der Makrophagen, gibt, ist es in Zukunft vielleicht möglich, die Blutbildung und damit den Aufbau des Immunsystems künstlich zu beschleunigen, etwa bei Patienten, die eine Knochenmark- oder Blutstammzelltransplantation erhalten. Denn diese Patienten sind, solange ihr Immunsystem noch nicht wieder aufgebaut ist, besonders gefährdet, eine Infektion zu bekommen. Dabei können ansonsten eher harmlose Erreger tödlich sein“, erläuterte Dr. Sieweke.
Dr. Sieweke weist auf Angaben des Worldwide Network for Blood & Marrow Transplantation (WBMT), (Januar 2013) hin, wonach weltweit jedes Jahr 50 000 Patienten eine Knochenmarktransplantation erhalten. „Dank des Signalstoffs M-CSF könnte es möglich sein, sie vor Infektionen zu schützen, während sich ihr Immunsystem neu aufbaut. Besonders hoffnungsvoll stimmt uns, dass der entdeckte Mechanismus nur die Bildung der Immunzellen anregt, die vor Infektionen schützen, nicht aber derjenigen, die auch ungewollt den Körper des Patienten angreifen können“, sagte Dr. Sieweke.

* Institut National de la Santé et de la Recherche Médicale (INSERM)
**Centre National de la Recherche Scientifique

*** M-CSF instructs myeloid lineage fate in single haematopoietic stem cells

Noushine Mossadegh-Keller1,2,3,*, Sandrine Sarrazin1,2,3,*,# , Prashanth K. Kandalla1,2,3, Leon Espinosa4, Richard E. Stanley5, Stephen L. Nutt6, Jordan Moore7, Michael H.Sieweke1,2,3,8,#
1 Centre d’Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France
2 Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
3 Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
4 Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique (CNRS), UMR 7283, 31 Chemin Joseph Aiguier, 13009 Marseille, France
5 Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
6 Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
7 Fluidigm Inc., San Francisco, CA, USA
8 Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany

* equal contribution # Corresponding author

Kontakt:
Dr. Michael SIEWEKE
Centre d’Immunologie de Marseille-Luminy
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Mobile : +33 (0)6 26 94 18 53
sieweke@ciml.univ-mrs.fr

und
presse@mdc-berlin.de
presse@cnrs-dir.fr
presse@inserm.fr

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de
http://www.ciml.univ-mrs.fr/
http://www.ciml.univ-mrs.fr/science/lab-michael-sieweke/beginners

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie