Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Koboldmaki-Erbgut liefert neue Einblicke in die Evolution der Primaten

06.10.2016

Ein Forscherteam hat das Koboldmaki-Erbgut analysiert und dabei neue Erkenntnisse über die Evolution der Primaten und springender Gene gewonnen

Ein deutsch-amerikanisches Forscherteam hat das Erbgut des Philippinischen Koboldmakis analysiert. Die Ergebnisse ermöglichen neue Einblicke in die frühe Primatenevolution. An der Studie waren das Institut für Experimentelle Pathologie der Medizinischen Fakultät Münster, das McDonnell Genome Institute Washington, die University of California in Santa Cruz sowie das Deutsche Primatenzentrum (DPZ) – Leibniz-Institut für Primatenforschung in Göttingen beteiligt.


Ein Koboldmaki (Carlito syrichta) mit seiner Beute.

Foto: David Haring/Duke Lemur Center

Durch die Untersuchungen von speziellen DNS-Abschnitten, den sogenannten springenden Genen, im Erbgut der kleinen Waldbewohner, haben die Forscher neue Elemente und deren Verteilungsmechanismen entdeckt. Außerdem konnten sie die Aktivitätsmuster verschiedener anderer springender Gene im Laufe der Primatenevolution aufklären. Da der Mensch ebenfalls zu den Primaten gehört, können die Forscher anhand der Ergebnisse Rückschlüsse auf unsere eigene Entwicklung ziehen (Nature Communications 7, 12997).

Abenddämmerung im philippinischen Regenwald. Im dichten Geäst einer Baumkrone ist ein ungewöhnliches Kerlchen aufgewacht. Der etwa faustgroße Waldbewohner klettert aus seiner Baumhöhle und macht sich für die Nacht bereit. Mit seinen großen Kugelaugen, jedes davon größer als sein Gehirn, nimmt der Philippinische Koboldmaki eine Heuschrecke ins Visier. Die Augen kann er zwar nicht bewegen, aber dank seiner stark modifizierten Halswirbel kann er seinen Kopf um 180 Grad in jede Richtung drehen.

Mit seinen langen, spindeldünnen Fingern greift der kleine Fleisch- und Insektenfresser die Heuschrecke und verspeist sie genüsslich. Seine mit speziellen Fußwurzeln ausgestatteten Füßchen gaben ihm den wissenschaftlichen Namen Tarsier (Singular Tarsius). Die kräftigen Hinterbeine ermöglichen es ihm, bis zu sechs Meter weit von Baum zu Baum zu springen. Mit rund 150 Gramm ist der Koboldmaki leichter als zwei Tafeln Schokolade. Für die Forschung hingegen ist er ein Schwergewicht, da er stammesgeschichtlich einen bisher kaum erforschten Zeitraum der Primatenevolution abdeckt.

Was kann solch ein sonderbarer Zeitgenosse über die frühe Evolution der Primaten erzählen? Die Antwort liegt versteckt im Erbgut. Um herauszufinden, was den kleinen Affen so einzigartig macht, nutzte ein deutsch-amerikanisches Forscherteam moderne, gentechnische Methoden (unter anderem Hochdurchsatz-Sequenzierung), um sein Erbgut zu entschlüsseln. Bei den anschließenden, detaillierten Analysen des Erbguts wurde besonderes Augenmerk auf sogenannte springende Gene gelegt, die eine wichtige Rolle bei der Evolution von Genen und Genomen und somit auch für die Evolution der Primaten spielen können.

Die Wissenschaftler um Jürgen Schmitz vom Institut für Experimentelle Pathologie der Medizinischen Fakultät Münster und Wesley Warren vom McDonnell Genome Institute Washington interessierten sich speziell für die Analyse springender Gene innerhalb der Koboldmakis. „Wir können durch die Analyse ihrer springenden Elemente viel über unsere eigene Evolution lernen“, erklärt Jürgen Schmitz, Leiter der Studie. Diese springenden Gene sind DNS-Abschnitte, die sich selbst kopieren und neue Positionen im Erbgut einnehmen können.

Wie beim Menschen machen die springenden Gene bei Koboldmakis rund die Hälfte des Erbgutes aus. Gemeinsam mit der University of California, Santa Cruz sowie Christian Roos und Angela Noll vom Deutschen Primatenzentrum (DPZ) in Göttingen konnten die Wissenschaftler bisher unbekannte springende Gene entdecken und deren Verteilungsmechanismen erklären. „Dank des vorliegenden Koboldmaki-Erbguts war es uns möglich, Integrationen springender Gene zu erkennen, die bereits sehr lange zurückliegen“, erläutert Jürgen Schmitz.

Vergleichsstudien mit anderen Primaten zeigen, dass vor etwa 50 Millionen Jahren, in der frühen Stammeslinie der Trockennasenaffen, viele dieser Gene ihren springenden Charakter verloren haben. Stattdessen evolvierten bei Affen andere Formen von springenden Genen, die heute einen sehr großen Teil unseres eigenen Erbgutes ausmachen. Vermutlich war ein extremer Rückgang in der Primatenpopulation der Grund für den Wechsel. Das Erbgut des Koboldmakis ist in der stammesgeschichtlichen Entwicklung von besonders großem wissenschaftlichen Interesse, da er Merkmale zweier verschiedener Primatengruppen besitzt – sowohl Merkmale der Feuchtnasenaffen, denen die Lemuren und Loris angehören, als auch Merkmale der höheren Primaten, denen die Affen und Menschen angehören.

„Wir haben den ersten Nachweis dafür gefunden, dass ein komplettes Erbgut eines Mitochondriums in ein Kernerbgut integriert worden ist“, erklärt Jürgen Schmitz. „Mitochondrien sind zelluläre Organellen, die eine eigene Erbsubstanz besitzen. Ein kompletter Einbau ist bei Säugetieren zuvor noch nie nachgewiesen worden.“

Außerdem konnten auch verschiedene Gene identifiziert werden, die den kleinen Waldbewohner so einzigartig machen und beispielsweise für die ausgeprägte Sehfähigkeit und die außerordentliche Sprungfähigkeit verantwortlich sind. Die Analysen zeigten zudem, dass die Populationsgröße des Koboldmakis zurzeit leider auf dem niedrigsten Stand seiner bisherigen Geschichte ist.

„Wie hoffen, dass unsere neuen Forschungsergebnisse und die einzigartige Position des Koboldmakis in der Stammesgeschichte der Primaten viele weiterführende Studien nach sich ziehen werden, die sowohl ein tiefergehendes Verständnis für die Biodiversität und Genetik der Primaten, als auch eine gesteigerte Aufmerksamkeit für diese besonderen Tiere zum Ziel haben werden“, fasst Angela Noll vom Deutschen Primatenzentrum die Bedeutung der Studie zusammen.

Originalpublikation

Schmitz, J. et al. (2016): Genome sequence of the basal haplorrhine primate Tarsius syrichta reveals unusual insertions. Nat. Commun. 7, 12997 doi: 10.1038/ncomms12997.

Kontakt und Hinweise für Redaktionen

Dr. Angela Noll
Tel: +49 551 3851-481
E-Mail: ANoll@dpz.eu

Dr. Christian Roos
Tel: +49 551 3851-300
E-Mail: CRoos@dpz.eu

Dr. Sylvia Siersleben (Kommunikation)
Tel: +49 551 3851-163
E-Mail: ssiersleben@dpz.eu

Druckfähige Bilder finden Sie in unserer Mediathek. Die Pressemitteilung mit weiterführenden Informationen finden Sie nach Ablauf der Sperrfrist auch auf unserer Website. Bitte senden Sie uns bei Veröffentlichung einen Beleg.

Bildunterschriften

P1: Ein Koboldmaki (Carlito syrichta) mit seiner Beute. Foto: David Haring/Duke Lemur Center

P2: Eine wissenschaftliche Zeichnung von Carlito syrichta. Bild: Jón Baldur Hlídberg, www.fauna.is

P3: Dr. Angela Noll ist seit Juli 2015 Bioinformatikerin in der Abteilung Primatengenetik am DPZ. Foto: Karin Tilch

Weitere Informationen:

http://www.dpz.eu - Homepage Deutsches Primatenzentrum
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=3601 - Druckfähige Bilder

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops