Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knochendefekte: Rostocker Forscher auf der Suche nach neuartigen Bio-Implantaten

20.12.2010
Wissenschaftler der Universität Rostock verfolgen neue, innovative Wege, die zur vollständigen Heilung großer knöcherner Gewebedefekte führen sollen. „3D-Geweberegeneration“ heißt das vom Wirtschaftsministerium Mecklenburg-Vorpommerns und der Europäischen Union mit 5,5 Millionen Euro geförderte Verbundprojekt, das von der DOT GmbH in Rostock koordiniert wird. Dabei geht es auch um neue Biomaterialien, die schneller wirksam sein sollen und dabei insbesondere die körpereigenen Heilungskräfte nutzen.

Die Herausforderung: der eigene Körper kann große Knochendefekte nicht mehr reparieren, die meist Folge von Tumoren, Unfällen, Infektionen oder Gelenkimplantatslockerungen sind. Diese Defekte werden derzeit durch Defekt-Implantate aufgefüllt, deren Lebensdauer begrenzt sein kann bzw. sich unzureichend mit dem verbliebenen Knochen verbinden.

Forscher der Orthopädischen Universitätsklinik und dem Bereich Zellbiologie der Universität Rostock arbeiten daran, das Verhalten von Knochenzellen und Knochengewebe unter realitätsnahen Bedingungen, das heißt, in einer dreidimensionalen Umgebung, besser zu verstehen. Ziel ist es, dass große Defekte mit neuen Biomaterialien vollständig geschlossen werden können und dadurch ausheilen, dass diese Biomaterialien in wenigen Monaten in körpereigenes Gewebe umgebaut werden.

Die Fachwelt spricht von „Tissue Engineering“. Gemeint ist damit, dass neues Knochengewebe im Körper wachsen und das neue Gewebe - zum Beispiel auch metallische Gelenkimplantate - mit dem angrenzenden Knochenlager fest verbinden kann. Damit diese Verbindung zuverlässig über viele Jahre hält, muss unter anderem die Oberflächengestaltung von Implantaten so erfolgen, dass das Gewebewachstum auf der Oberfläche gefördert und das dann neu gewachsene Gewebe gut mit Blut und Nährstoffen versorgt wird.

Zellbiologin Dr. Barbara Nebe verweist auf den langen Forschungsweg von ersten Laborversuchen über Tierversuche bis hin zu den ersten klinischen Studien. „Darin stecken einige Jahre intensive Forschungsarbeit“, so Frau Dr. Nebe. Da es sehr schwierig, ist Zellen im Inneren von räumlichen Strukturen zu untersuchen, wurde eigens ein 3D-Stapel-Modell entwickelt, das in einen Zellkultur-Reaktor eingebettet ist. „Damit können grundlegende Fragen zum Verhalten von Zellen in 3D-Umgebungen untersucht werden“, erklärt Nebe.

Das große Ziel sind 3D-Implantate, also „mechanisch stabile Formkörper, mit denen man große Knochendefekte ausfüllen kann“, sagt Prof. Dr. Rainer Bader, Leiter des Forschungslabors der Orthopädischen Uni-Klinik Rostock. Er ist sowohl Mediziner als auch Ingenieur. Seine Forschung konzentriert sich darauf, dass diese 3D-Implantate von dem angrenzenden und dann wachsenden Knochengewebe durchdrungen werden und damit optimal einwachsen.

„Für große Defekte gibt es bislang noch keine Lösungen“, weiß Bader. Das Problem: Zellen müssen bis in die Tiefe des großen Implantates vordringen und auch dort neues Knochengewebe bilden. Bislang sei das Einwachsen der Zellen in die 3D-Implantate kompliziert und unzureichend erforscht. „Mit neuen Untersuchungstechniken soll nun das Zellwachstum analysiert und kontrolliert werden“, sagt Bader.

In dem Forschungs-Verbundprojekt arbeitet die Firma DOT GmbH Rostock eng mit dem Arbeitsbereich Zellbiologie im Biomedizinischen Forschungszentrum, der Orthopädischen Klinik, dem Institut für Biophysik, dem Institut für Gerätesysteme und Schaltungstechnik (alle Universität Rostock), dem Institut für Polymertechnologie (IPT), Wismar und dem Leibniz-Institut für Plasmaforschung und Technologie (INF) Greifswald zusammen.

Die Firma DOT beschäftigt sich mit der „Biologisierung“ von metallischen Implantaten. „Ist ein Gelenk untherapierbar verschlissen, wird es derzeit durch ein Implantatsystem bestehend aus Metall, Keramik und Kunststoff ersetzt“, sagt Dr. Dieter Klinkenberg von DOT. „Eine rein biologische Reparatur wäre besser, ist aber noch nicht möglich“, urteilt der Diplom Physiker.

In dem Unternehmen werden dreidimensionale, variable und mechanisch belastbare Gewebegenerationsmaterialien zum Füllen von Knochendefekten entwickelt. Durch eine bioaktive Oberfläche von Implantaten soll ein schnelles und komplikationsfreies Einwachsen möglich sein. Um das eingesetzte Material sicher zu integrieren, muss es von knocheneigenen Zellen besiedelt und oder von den Zellen abgebaut und durch körpereigene Knochensubstanz ersetzt werden. So bildet sich dann fest anliegendes, haltendes Gewebe. Bislang ist für die stabile Integration von Implantaten im Knochen ein Zeitraum von ca. 15 Jahren typisch, eine mögliche Verlängerung auf 20 Jahre wäre ein echter Fortschritt.

„Wir gehen davon aus, dass international wettbewerbsfähige Medizinprodukte bei DOT entstehen, die dort hochwertige Arbeitsplätze schaffen“, sagt Ralf Svoboda, Referatsleiter Technologie im Schweriner Wirtschaftsministerium. „Es freut mich, dass das medizinische Fachwissen am Standort Rostock genutzt wird, um die Wettbewerbsfähigkeit des international agierenden Unternehmens DOT noch weiter zu verbessern“.

Kontakt:
Universität Rostock
Presse+Kommunikation
Dr. Ulrich Vetter
Telefon: +49 (0)381 498 1013
E-Mail: ulrich.vetter@uni-rostock.de
Medizinische Fakultät
Prof. Dr. Rainer Bader
Telefon: +49 (0)381 494 93 37
E-Mail: rainer.bader@med.uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie