Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo die Knochen verletzter Nervenzellen heilen

08.01.2010
Mikrotubuli geben Zellen Struktur und ermöglichen ihr Wachstum sowie ihre Teilung. Bisher wurde angenommen, dass Mikrotubuli von dem Zentrosom, einem Zellorganell in der Nähe des Zellkerns, gebildet werden.

Wissenschaftler vom Max-Planck-Institut für Neurobiologie in Martinsried und für Molekulare Zellbiologie und Genetik in Dresden zeigen nun, dass ausgereifte Nervenzellen des Zentralen Nervensystems kein aktives Zentrosom mehr besitzen - ihre Mikrotubuli können sich unabhängig vom Zentrosom neu bilden. Dies widerlegt die Lehrmeinung zum Ursprung von Mikrotubuli und zeigt, dass ein essentieller Prozess zur Regeneration auch in ausgereiften Nervenzellen zur Verfügung steht. [Science Express]

Zellen sind die Bausteine aller Lebewesen. Angepasst an ihre sehr unterschiedlichen Aufgaben, gibt es eine Vielzahl verschiedener Zelltypen und -formen. Diese reichen von nahezu runden Hefezellen bis hin zu tausendfach verzweigten Nervenzellen. Ermöglicht werden diese verschiedenen Zellformen durch das Zellskelett, das den Zellen Stabilität und Struktur verleiht. Das Zellskelett besteht aus kleinen Proteinröhrchen, den Mikrotubuli, die je nach Bedarf verlängert oder verkürzt werden können. So kann eine Zelle wachsen oder zum Beispiel einen Fortsatz bilden und wieder zurückziehen. Doch auch die Zellteilung wäre durch die stabilisierenden und richtungsweisenden Mikrotubuli nicht möglich.

Nach der bisherigen Lehrbuchmeinung entstehen Mikrotubuli am Zentrosom, einer Struktur in der Nähe des Zellkerns, die auch als "Mikrotubuli Organisierendes Zentrum" bezeichnet wird. Seine Rolle bei der Zellteilung und der Mikrotubuli-Entstehung macht das Zentrosom auch für Neurobiologen sehr interessant. Denn ausgereifte Nervenzellen können sich generell nicht mehr teilen und wachsen im Gehirn und Rückenmark nach einer Verletzung nicht mehr aus. Könnte dies daran liegen, dass das Zentrosom seine Funktion in diesen Nervenzellen verliert?

Dieser Frage gingen Wissenschaftler vom Max-Planck-Institut für Neurobiologie in Martinsried zusammen mit ihren Kollegen vom Max-Planck-Institut für Molekulare Zellbiologie und Genetik in Dresden und des Erasmus Medical Centers in Rotterdam auf den Grund. Wie die Forscher nun im Fachmagazin Science berichten, ist das Zentrosom in ausgereiften Nervenzellen tatsächlich inaktiv. Ohne aktives Zentrosom sollte die Teilung dieser Nervenzellen sehr schwer werden.

Nach diesem Fund lag die nächste Frage auf der Hand: Ist das inaktive Zentrosom auch ein Grund dafür, dass Nervenzellen im Gehirn und Rückenmark nach einer Verletzung nicht mehr auswachsen? Erst vor Kurzem konnten die Martinsrieder Neurobiologen zeigen, dass die Mikrotubuli am Ende solch einer verletzten Nervenzelle völlig durcheinandergeraten. Neue Mikrotubuli müssten nach der gängigen Meinung vom Zentrosom "nachgeschoben" werden, was natürlich bei einem inaktiven Zentrosom nicht möglich ist.

Um diese Frage zu klären, untersuchten die Max-Planck-Wissenschaftler aus Martinsried und Dresden anhand von Zellkulturen, wo Mikrotubuli in Nervenzellen entstehen. Dazu zerlegten sie die Proteinröhrchen zunächst in ihre Einzelteile und beobachteten dann ihren erneuten Aufbau in den Zellen. Wie erwartet entstanden die Mikrotubuli in jungen Nervenzellen vor allem am Zentrosom. Jedoch nicht ausschließlich: Einzelne Mikrotubuli bildeten sich auch an ganz anderen Stellen des Zellkörpers. "Die wirkliche Sensation zeigte sich aber erst, als wir ausgereifte Nervenzellen untersuchten", berichtet Michael Stiess von seiner Arbeit. Denn auch in diesen Zellen entstanden neue Mikrotubuli - und zwar überall in der Zelle, nur nicht am Zentrosom.

Die Ergebnisse widerlegen die Lehrmeinung, dass Mikrotubuli vom Zentrosom aus gebildet werden. Das hat auch Konsequenzen für die Regeneration von Nervenzellen, denn anscheinend können Mikrotubuli direkt an einem verletzten Ausläufer einer Nervenzelle gebildet werden und müssen nicht erst aufwendig vom Zellkörper dorthin transportiert werden. Wichtig ist hier auch eine weitere Entdeckung der Wissenschaftler: Die vor Ort gebildeten Mikrotubuli reichen aus, um eine Nervenzelle auswachsen zu lassen. So wuchsen selbst junge Nervenzellen weiter, obwohl die Wissenschaftler ihre Zentrosome mit einem speziellen Laser entfernt hatten. "Somit sollte eine der Grundvoraussetzungen für die Regeneration von Nervenzellen auch im Gehirn und Rückenmark zur Verfügung zu stehen", freut sich Frank Bradke, der Leiter der Studie. Nun gilt es herauszufinden, wie dieser Aufbau von Mikrotubuli und somit das Auswachsen verletzter Nervenzellen im lebenden Organismus angeregt werden kann.

Originalveröffentlichung
Axon Extension Occurs Independently of Centrosomal Microtubule Nucleation
Michael Stiess, Nicola Maghelli, Lukas C. Kapitein, Susana Gomis-Rüth, Michaela Wilsch-Bräuninger, Casper C. Hoogenraad, Iva M. Toli?-Nørrelykke, Frank Bradke.

Science, Express Veröffentlichung am 7. Januar 2010

Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
Fax: +49 89 8995-0022
E-Mail: merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/junior/axgr

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotikaresistente Erreger in Haushaltsgeräten
16.02.2018 | Hochschule Rhein-Waal

nachricht Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt
16.02.2018 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics