Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knick im Molekül macht Parkinson-Protein zum Aggregations-Hemmer

28.07.2015

Strukturell verändertes α-Synuclein bildet keine toxischen Aggregate mehr und hemmt Verklumpung anderer Proteine

Aggregate des körpereigenen Proteins α-Synuclein gelten als Auslöser der Parkinson-Erkrankung im Gehirn. Wie Jülicher und Düsseldorfer Wissenschaftler jetzt beobachtet haben, verliert das Protein seine fatale Tendenz zur Aggregation, wenn die molekulare Struktur an einer kritischen Stelle verändert wird.


Eine zusätzliche chemische Bindung in der Molekülstruktur von α-Synuclein fixiert zwei bindungsfreudige Segmente aneinander (rot markiert). So wird unterbunden, dass sich die Protein-Teilchen zu faserartigen Aggregaten zusammenlagern, die als Ursache der Parkinson-Krankheit gelten (im Hintergrund zu sehen). Das modifizierte Protein verhindert zudem die Aggregation anderer krankheitsrelevanter Proteine, wie Aβ (Alzheimer) und IAPP (Diabetes II).

Copyright: Forschungszentrum Jülich / HHU Düsseldorf

Das modifizierte α -Synuclein hemmt zudem die Aggregation von Proteinen, die mit Alzheimer und Diabetes Typ II in Verbindung stehen. Der Effekt, den die Forscher in der aktuellen Ausgabe der Fachzeitschrift "Angewandte Chemie" beschreiben, könnte Ansätze für neue therapeutische Strategien liefern und dazu beitragen, die auffälligen Überlappungen zwischen unterschiedlichen neurodegenerativen Krankheiten zu erklären.

Im Verlauf der Parkinson’schen Erkrankung verkleben Einzelmoleküle des Proteins α-Synuclein miteinander und bilden toxische Aggregate. Eine bestimmte Stelle des Moleküls steht besonders in Verdacht, dabei eine entscheidende Rolle zu spielen: Der Abschnitt enthält die bindungsfreudigen Segmente beta 1 und beta 2, die sich im Kern von α-Synuclein-Aggregaten finden. Auch innerhalb des Moleküls binden die beta-Segmente vorübergehend aneinander.

Wie es sich auswirkt, wenn diese Bindung dauerhaft fixiert wird, haben jetzt Wissenschaftler am Institut für Physikalische Biologie der Heinrich-Heine-Universität Düsseldorf und am Institut für Strukturbiochemie des Forschungszentrums Jülich getestet. In den genetischen Bauplan des Protein-Moleküls integrierten sie dazu eine sogenannte Disulfid-Brücke aus zwei Schwefelatomen, mit der die Segmente gewissermaßen zusammengeklemmt werden.

Das von den Forschern α-synCC genannte modifizierte Protein lagert sich nicht mehr zusammen und hat zudem einen Effekt auf andere krankheitsrelevante Proteine, mit denen es in Kontakt kommt: So hemmte es im Versuch die Ablagerung von natürlich vorkommendem α-Synuclein sowie von zwei Proteinen, deren Aggregate als Ursache der Alzheimer'schen Demenz und Diabetes mellitus Typ 2 gelten.

"Auch das unmodifizierte α-Synuclein hatte auf diese beiden Proteine eine aggregationshemmende Wirkung. Die Wirkung des veränderten α-Synucleins war aber wesentlich stärker", sagt Dr. Wolfgang Hoyer, der die Studie leitete.

Auf welche Weise das veränderte α-Synuclein die Aggregation der anderen Proteine eingreift, ist noch nicht klar. "Unsere Ergebnisse deuten darauf hin, dass α-synCC sich ans Ende der bis dahin gebildeten Protein-Fibrillen setzt und dann keine weiteren Proteinmoleküle mehr andocken lässt", erklärt Hoyer.

"Die neuen Erkenntnisse sind wichtig für die Weiterentwicklung therapeutischer Strategien und tragen auch dazu bei, die Zusammenhänge zwischen unterschiedlichen neurodegenerativen Krankheiten zu erklären", ergänzt Prof. Dieter Willbold, Direktor der beiden beteiligten Institute in Jülich und Düsseldorf.

Original-Publikation:

Shaykhalishahi, H., Gauhar, A., Wördehoff, M. M., Grüning, C. S. R., Klein, A. N., Bannach, O., Stoldt, M., Willbold, D., Härd, T. and Hoyer, W. (2015), Contact between the β1 and β2 Segments of α-Synuclein that Inhibits Amyloid Formation. Angew Chem Int Ed 2015 July 20; 54(30): 8837-40.
DOI: 10.1002/anie.201503018;
http://onlinelibrary.wiley.com/doi/10.1002/anie.201503018/abstract

Weitere Informationen:
Forschungszentrum Jülich, Institute of Complex Systems, Bereich Strukturbiochemie (ICS-6)
http://www.fz-juelich.de/ics/ics-6/DE/Home/home_node.html

Institut für Physikalische Biologie der Heinrich-Heine-Universität Düsseldorf
https://www.uni-duesseldorf.de/MathNat/ipb/

Ansprechpartner:

Dr. Wolfgang Hoyer
Institut für Physikalische Biologie
Heinrich-Heine-Universität Düsseldorf
Tel.: +49 211 81-15153
E-Mail: wolfgang.hoyer@uni-duesseldorf.de

Pressekontakt:

Peter Zekert
Wissenschaftlicher Kommunikationsreferent
Tel. +49 2461 61-9711
E-Mail: p.zekert@fz-juelich.de

Peter Zekert | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik