Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knick im Molekül macht Parkinson-Protein zum Aggregations-Hemmer

28.07.2015

Strukturell verändertes α-Synuclein bildet keine toxischen Aggregate mehr und hemmt Verklumpung anderer Proteine

Aggregate des körpereigenen Proteins α-Synuclein gelten als Auslöser der Parkinson-Erkrankung im Gehirn. Wie Jülicher und Düsseldorfer Wissenschaftler jetzt beobachtet haben, verliert das Protein seine fatale Tendenz zur Aggregation, wenn die molekulare Struktur an einer kritischen Stelle verändert wird.


Eine zusätzliche chemische Bindung in der Molekülstruktur von α-Synuclein fixiert zwei bindungsfreudige Segmente aneinander (rot markiert). So wird unterbunden, dass sich die Protein-Teilchen zu faserartigen Aggregaten zusammenlagern, die als Ursache der Parkinson-Krankheit gelten (im Hintergrund zu sehen). Das modifizierte Protein verhindert zudem die Aggregation anderer krankheitsrelevanter Proteine, wie Aβ (Alzheimer) und IAPP (Diabetes II).

Copyright: Forschungszentrum Jülich / HHU Düsseldorf

Das modifizierte α -Synuclein hemmt zudem die Aggregation von Proteinen, die mit Alzheimer und Diabetes Typ II in Verbindung stehen. Der Effekt, den die Forscher in der aktuellen Ausgabe der Fachzeitschrift "Angewandte Chemie" beschreiben, könnte Ansätze für neue therapeutische Strategien liefern und dazu beitragen, die auffälligen Überlappungen zwischen unterschiedlichen neurodegenerativen Krankheiten zu erklären.

Im Verlauf der Parkinson’schen Erkrankung verkleben Einzelmoleküle des Proteins α-Synuclein miteinander und bilden toxische Aggregate. Eine bestimmte Stelle des Moleküls steht besonders in Verdacht, dabei eine entscheidende Rolle zu spielen: Der Abschnitt enthält die bindungsfreudigen Segmente beta 1 und beta 2, die sich im Kern von α-Synuclein-Aggregaten finden. Auch innerhalb des Moleküls binden die beta-Segmente vorübergehend aneinander.

Wie es sich auswirkt, wenn diese Bindung dauerhaft fixiert wird, haben jetzt Wissenschaftler am Institut für Physikalische Biologie der Heinrich-Heine-Universität Düsseldorf und am Institut für Strukturbiochemie des Forschungszentrums Jülich getestet. In den genetischen Bauplan des Protein-Moleküls integrierten sie dazu eine sogenannte Disulfid-Brücke aus zwei Schwefelatomen, mit der die Segmente gewissermaßen zusammengeklemmt werden.

Das von den Forschern α-synCC genannte modifizierte Protein lagert sich nicht mehr zusammen und hat zudem einen Effekt auf andere krankheitsrelevante Proteine, mit denen es in Kontakt kommt: So hemmte es im Versuch die Ablagerung von natürlich vorkommendem α-Synuclein sowie von zwei Proteinen, deren Aggregate als Ursache der Alzheimer'schen Demenz und Diabetes mellitus Typ 2 gelten.

"Auch das unmodifizierte α-Synuclein hatte auf diese beiden Proteine eine aggregationshemmende Wirkung. Die Wirkung des veränderten α-Synucleins war aber wesentlich stärker", sagt Dr. Wolfgang Hoyer, der die Studie leitete.

Auf welche Weise das veränderte α-Synuclein die Aggregation der anderen Proteine eingreift, ist noch nicht klar. "Unsere Ergebnisse deuten darauf hin, dass α-synCC sich ans Ende der bis dahin gebildeten Protein-Fibrillen setzt und dann keine weiteren Proteinmoleküle mehr andocken lässt", erklärt Hoyer.

"Die neuen Erkenntnisse sind wichtig für die Weiterentwicklung therapeutischer Strategien und tragen auch dazu bei, die Zusammenhänge zwischen unterschiedlichen neurodegenerativen Krankheiten zu erklären", ergänzt Prof. Dieter Willbold, Direktor der beiden beteiligten Institute in Jülich und Düsseldorf.

Original-Publikation:

Shaykhalishahi, H., Gauhar, A., Wördehoff, M. M., Grüning, C. S. R., Klein, A. N., Bannach, O., Stoldt, M., Willbold, D., Härd, T. and Hoyer, W. (2015), Contact between the β1 and β2 Segments of α-Synuclein that Inhibits Amyloid Formation. Angew Chem Int Ed 2015 July 20; 54(30): 8837-40.
DOI: 10.1002/anie.201503018;
http://onlinelibrary.wiley.com/doi/10.1002/anie.201503018/abstract

Weitere Informationen:
Forschungszentrum Jülich, Institute of Complex Systems, Bereich Strukturbiochemie (ICS-6)
http://www.fz-juelich.de/ics/ics-6/DE/Home/home_node.html

Institut für Physikalische Biologie der Heinrich-Heine-Universität Düsseldorf
https://www.uni-duesseldorf.de/MathNat/ipb/

Ansprechpartner:

Dr. Wolfgang Hoyer
Institut für Physikalische Biologie
Heinrich-Heine-Universität Düsseldorf
Tel.: +49 211 81-15153
E-Mail: wolfgang.hoyer@uni-duesseldorf.de

Pressekontakt:

Peter Zekert
Wissenschaftlicher Kommunikationsreferent
Tel. +49 2461 61-9711
E-Mail: p.zekert@fz-juelich.de

Peter Zekert | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive