Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die kleinsten Hochzeitsringe der Welt

08.04.2011
Zwei ineinander greifende Ringe aus DNA sind nur im Rasterkraft-mikroskop sichtbar

Künstliche Strukturen aus DNA zu bauen, ist das Ziel der DNA-Nanotechnologie. Diese neue Disziplin an der Schnittstelle von Biologie, Physik, Chemie und Materialwissenschaften macht sich die Selbstorganisationsfähigkeit der natürlichen DNA-Stränge zunutze. So hat man mittlerweile wenige 10 Nanometer (10 Milliardstel Meter) große Smileys oder kleine Kisten aus DNA in einem Tropfen Wasser aufgebaut.

Prof. Alexander Heckel und seinem Doktoranden Thorsten Schmidt vom „Excellenzcluster Makromolekulare Komplexe“ an der Goethe-Universität ist es nun gelungen, zwei nur 18 Nanometer große Ringe aus DNA herzustellen und sie wie zwei Kettenglieder ineinander greifen zu lassen. Eine solche Struktur nennt man Catenan, abgeleitet vom lateinischen Wort catena (Kette). Für Schmidt, der während seiner Arbeit an den Nano-Ringen heiratete, sind es die wahrscheinlich kleinsten Hochzeitsringe der Welt.

Wissenschaftlich gesehen markiert die Struktur einen wichtigen Fortschritt in der DNA-Nanotechnologie, denn die beiden Ringe des Catenans sind im Gegensatz zu der Mehrzahl der bereits realisierten DNA Nanoarchitekturen keine starren Gebilde, sondern - abhängig von den Umgebungsbedingungen - frei drehbar. Dadurch eignen sie sich als Komponenten von molekularen Maschinen oder eines molekularen Motors. „Bis künstliche Strukturen aus DNA wie das Catenan in Alltagsgütern zur Anwendung kommen, ist es noch ein weiter Weg“, urteilt Prof. Alexander Heckel. „Aber Strukturen aus DNA könnten in naher Zukunft dazu dienen, Proteine oder andere Moleküle, die zu klein sind für eine direkte Manipulation, durch Selbstorganisation anzuordnen und zu studieren.“ Damit könnten DNA Nanoarchitekturen zu vielseitig einsetzbaren Werkzeugen für die schwer zugängliche Nanometerwelt werden.

Bei der Herstellung von DNA-Nanoarchitekturen machen sich die Wissenschaftler Paarungsregeln der vier DNA-Nukleobasen zunutze, nach denen auch zwei natürliche DNA-Stränge zusammenfinden (allerdings ist bei den DNA-Nanoarchitekturen die Basenabfolge ohne biologische Bedeutung). Ein A auf einem Strang paart mit T auf dem Gegenstrang und C ist komplementär zu G. Die Kunst besteht darin, die Sequenzen der beteiligten DNA Stränge so zu entwerfen, dass sich die gewünschte Struktur ohne direktes Eingreifen des Experimentators von selbst aufbaut. Sind nur bestimmte Abschnitte der verwendeten Stränge zueinander komplementär, kann man Verzweigungen und Kreuzungen bauen.

Wie Schmidt und Heckel in der Fachzeitschrift „Nano Letters“ (online Vorabveröffentlichung) berichten, stellten sie für die Catenane zunächst zwei C-förmige DNA Fragmente her. Mithilfe spezieller Moleküle, die wie sequenzspezifischer Kleber für die Doppelhelix wirken, ordneten sie die „Cs“ so an, dass sie zwei Kreuzungsstellen bildeten, wobei die offenen Enden der „Cs“ voneinander wegzeigen (s. Bild). Durch die Zugabe von zwei Strängen, welche mit den noch offenen Enden der beiden Ringfragmente schließen, entstand das fertige Catenan. Thorsten Schmidt hat die Veröffentlichung seiner Frau Dr. Diana Gonçalves Schmidt gewidmet, die diese Leistung auch wissenschaftlich zu schätzen weiß: Sie arbeitete ebenfalls in der Arbeitsgruppe von Alexander Heckel.

Da sie viel kleiner sind als die Wellenlänge des sichtbaren Lichts, kann man die Ringe mit einem herkömmlichen Mikroskop nicht sehen. „Man müsste etwa 4000 solcher Ringe aneinander reihen, um auch nur den Durchmesser eines menschlichen Haares zu erreichen“, erklärt Thorsten Schmidt. Daher bildete er die Catenane mit einem Rasterkraftmikroskop ab, welches die auf eine Oberfläche aufgebrachten Ringe mit einer extrem feinen Spitze abtastet.

Informationen:

Prof. Dr. Alexander Heckel, Exzellenzcluster Makromolekulare Komplexe, Campus Riedberg, Tel: (069) 798- 29821 (Sekretariat); heckel@em.uni-frankfurt.de;

Dr. Thorsten Schmidt ist inzwischen an der Universität Harvard, USA, Tel.: +1-857-334-9212 Thorsten.Schmidt@wyss.harvard.edu, Interviews sind möglich über Skype, Skype-Name t.l.schmidt

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de/~heckel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics