Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die kleinsten Hochzeitsringe der Welt

08.04.2011
Zwei ineinander greifende Ringe aus DNA sind nur im Rasterkraft-mikroskop sichtbar

Künstliche Strukturen aus DNA zu bauen, ist das Ziel der DNA-Nanotechnologie. Diese neue Disziplin an der Schnittstelle von Biologie, Physik, Chemie und Materialwissenschaften macht sich die Selbstorganisationsfähigkeit der natürlichen DNA-Stränge zunutze. So hat man mittlerweile wenige 10 Nanometer (10 Milliardstel Meter) große Smileys oder kleine Kisten aus DNA in einem Tropfen Wasser aufgebaut.

Prof. Alexander Heckel und seinem Doktoranden Thorsten Schmidt vom „Excellenzcluster Makromolekulare Komplexe“ an der Goethe-Universität ist es nun gelungen, zwei nur 18 Nanometer große Ringe aus DNA herzustellen und sie wie zwei Kettenglieder ineinander greifen zu lassen. Eine solche Struktur nennt man Catenan, abgeleitet vom lateinischen Wort catena (Kette). Für Schmidt, der während seiner Arbeit an den Nano-Ringen heiratete, sind es die wahrscheinlich kleinsten Hochzeitsringe der Welt.

Wissenschaftlich gesehen markiert die Struktur einen wichtigen Fortschritt in der DNA-Nanotechnologie, denn die beiden Ringe des Catenans sind im Gegensatz zu der Mehrzahl der bereits realisierten DNA Nanoarchitekturen keine starren Gebilde, sondern - abhängig von den Umgebungsbedingungen - frei drehbar. Dadurch eignen sie sich als Komponenten von molekularen Maschinen oder eines molekularen Motors. „Bis künstliche Strukturen aus DNA wie das Catenan in Alltagsgütern zur Anwendung kommen, ist es noch ein weiter Weg“, urteilt Prof. Alexander Heckel. „Aber Strukturen aus DNA könnten in naher Zukunft dazu dienen, Proteine oder andere Moleküle, die zu klein sind für eine direkte Manipulation, durch Selbstorganisation anzuordnen und zu studieren.“ Damit könnten DNA Nanoarchitekturen zu vielseitig einsetzbaren Werkzeugen für die schwer zugängliche Nanometerwelt werden.

Bei der Herstellung von DNA-Nanoarchitekturen machen sich die Wissenschaftler Paarungsregeln der vier DNA-Nukleobasen zunutze, nach denen auch zwei natürliche DNA-Stränge zusammenfinden (allerdings ist bei den DNA-Nanoarchitekturen die Basenabfolge ohne biologische Bedeutung). Ein A auf einem Strang paart mit T auf dem Gegenstrang und C ist komplementär zu G. Die Kunst besteht darin, die Sequenzen der beteiligten DNA Stränge so zu entwerfen, dass sich die gewünschte Struktur ohne direktes Eingreifen des Experimentators von selbst aufbaut. Sind nur bestimmte Abschnitte der verwendeten Stränge zueinander komplementär, kann man Verzweigungen und Kreuzungen bauen.

Wie Schmidt und Heckel in der Fachzeitschrift „Nano Letters“ (online Vorabveröffentlichung) berichten, stellten sie für die Catenane zunächst zwei C-förmige DNA Fragmente her. Mithilfe spezieller Moleküle, die wie sequenzspezifischer Kleber für die Doppelhelix wirken, ordneten sie die „Cs“ so an, dass sie zwei Kreuzungsstellen bildeten, wobei die offenen Enden der „Cs“ voneinander wegzeigen (s. Bild). Durch die Zugabe von zwei Strängen, welche mit den noch offenen Enden der beiden Ringfragmente schließen, entstand das fertige Catenan. Thorsten Schmidt hat die Veröffentlichung seiner Frau Dr. Diana Gonçalves Schmidt gewidmet, die diese Leistung auch wissenschaftlich zu schätzen weiß: Sie arbeitete ebenfalls in der Arbeitsgruppe von Alexander Heckel.

Da sie viel kleiner sind als die Wellenlänge des sichtbaren Lichts, kann man die Ringe mit einem herkömmlichen Mikroskop nicht sehen. „Man müsste etwa 4000 solcher Ringe aneinander reihen, um auch nur den Durchmesser eines menschlichen Haares zu erreichen“, erklärt Thorsten Schmidt. Daher bildete er die Catenane mit einem Rasterkraftmikroskop ab, welches die auf eine Oberfläche aufgebrachten Ringe mit einer extrem feinen Spitze abtastet.

Informationen:

Prof. Dr. Alexander Heckel, Exzellenzcluster Makromolekulare Komplexe, Campus Riedberg, Tel: (069) 798- 29821 (Sekretariat); heckel@em.uni-frankfurt.de;

Dr. Thorsten Schmidt ist inzwischen an der Universität Harvard, USA, Tel.: +1-857-334-9212 Thorsten.Schmidt@wyss.harvard.edu, Interviews sind möglich über Skype, Skype-Name t.l.schmidt

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de/~heckel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie