Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die kleinsten Eiskristalle der Welt

21.09.2012
Ein raffiniertes Experiment deckt auf, ab wie vielen Molekülen Wasser eine kristalline Ordnung bildet

Auch Eiskristalle fangen mal klein an, und sogar kleiner als bisher gedacht. Schon 475 Wassermoleküle bilden eine echte kristalline Ordnung, erste Ansätze davon sind bereits ab 275 Molekülen zu erkennen, wie eine Kooperation aus Göttinger und Prager Wissenschaftlern herausgefunden hat. Zuvor galten etwa 1000 Moleküle als Minimum für einen vollständigen Kristall. Die neue Untergrenze für Eisklümpchen haben die Forscher um Thomas Zeuch von der Universität Göttingen mit einem Experiment bestimmt, das Udo Buck vom Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation entwickelt hat.


Am Ursprung des perfekten Kristalls: Wasser kristallisiert in einer sechszähligen Symmetrie, die an jeder Schneeflocke zu erkennen ist. Diese Ordnung bildet sich bereits in Wasserclustern mit 475 Molekülen aus, die mit einer Schneeflocke noch keine Ähnlichkeit haben.

Foto: Science Photo Library

Nichts ist für uns so selbstverständlich wie das Verhalten von Wasser. Dazu gehört die sommerliche Erfahrung, dass eine im Gefrierfach vergessene Wasserflasche platzt. „Dabei ist das ganz eigenartig“, kann Udo Buck sich nach seiner langen Wissenschaftlerkarriere noch begeistern: „Wasser ist witzigerweise einer der wenigen uns bekannten Stoffe, der im festen Zustand ein größeres Volumen als im flüssigen Zustand einnimmt.“ Mit dem kleinsten Wassereiskristall hat der Forschungsgruppenleiter am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen ein wegweisendes Ergebnis erzielt. Seine Mitautoren, darunter die Gruppe von Thomas Zeuch am Institut für Physikalische Chemie der Universität Göttingen, und ein Forscher von der Technischen Universität Prag, haben dazu ein von Buck seit den 2000er-Jahren entwickeltes Experiment weiter verfeinert.

Nun hat das Team ein bislang ungelöstes wissenschaftliches Rätsel geknackt, nämlich die Frage, wie viele Wassermoleküle mindestens zusammenkommen müssen, damit sie einen echten Eiskristall formen können. „Bei 275 Wassermolekülen geht es los“, lautet die verblüffend präzise Antwort von Buck, „und bei 475 Molekülen ist der Kristall vollständig fertig“. Das sei durchaus unerwartet, schiebt Buck nach, denn bislang habe die Wissenschaft eine minimale Clustergröße von etwa 1000 Wassermolekülen vorausgesetzt. Unter Clustern verstehen Physiker und Physikochemiker Konglomerate aus wenigen, noch abzählbaren Molekülen. Die Eigenschaften dieser Nanogebilde liegen zwischen denjenigen einzelner Moleküle und der Welt großer Festkörper zum Anfassen, die aus vielen Milliarden Molekülen bestehen.

Ein besseres Verständnis des Kristallisationsprozesses hilft Klimaforschern

Allerdings untersuchte die Göttinger Kooperation nicht das Entstehen von Eis aus flüssigem Wasser. Ihre Entdeckung gibt Einblicke in die Vorgänge, bei denen Wasserdampf bei tiefen Temperaturen direkt zu winzigen Eiskristallen kondensiert. „Solche Prozesse spielen in den oberen Atmosphärenschichten eine wichtige Rolle“, betont Buck: „aber auch in unserem Planetensystem.“ Das neue Ergebnis könnte also der Klimaforschung helfen, ihre Modelle der Atmosphäre zu verbessern. Aber was fanden die Forscher nun genau heraus?

In Eiskristallen sortieren sich die Wassermoleküle zu einem sechseckigen, wissenschaftlich präziser gesagt, hexagonalen Raumgitter. Dabei baut jedes Wassermolekül chemische Bindungen, sogenannte Wasserstoffbrücken, zu jeweils vier Nachbarmolekülen auf. Dieses wabenförmige Kristallgitter von Wassereis benötigt mehr Raum als das flüssige Wasser, was außergewöhnlich ist. Solange die Wassercluster noch nicht die Mindestgröße für einen Kristall erreicht haben, bringt das Göttinger Experiment sie in ein Dilemma. Die Versuche finden bei ungefähr minus 180 bis minus 150 Grad Celsius statt – für eine Flüssigkeit sind die Moleküle also viel zu kalt. Für einen Kristall sind sie aber noch zu wenige. Aus der Zwickmühle kommen die kleinen Cluster, indem sie eine Art in der Kälte gestockte Flüssigkeit bilden: Sie bilden ein eher unordentliches, „amorphes“ Raumgitter.

Wächst der Cluster nun, können die Wassermoleküle in seinem Kern irgendwann vom ungeordneten chemischen Spiel in die kristalline Ordnung wechseln, in der sie alle jeweils vier Nachbarn an die chemische Hand nehmen. So entstehen bei 275 Wassermolekülen im Inneren des Clusters erste Ansätze eines echten Eiskristalls mit sechseckiger Struktur. Anfangs ist diese Struktur noch etwas deformiert. Doch mit wachsender Clustergröße wächst dieses Innenleben zu einem schön geordneten Eiskristall, während die Außenschichten noch amorph bleiben. „Bei 475 Molekülen ist es ganz innen schon perfekt“, sagt Buck.

In den Schwingungen der Moleküle offenbart sich die Kristallstruktur

Dieser Einblick in das Entstehen von Eiskristallen war nur mit einem ausgefeilten Experiment möglich. Normalerweise durchleuchten Wissenschaftler Kristalle mit Röntgenstrahlen: Diese werden von den Gittern gebeugt. Dabei entstehen charakteristische Muster der Strahlung, die Informationen über den Aufbau der Gitter liefern.
Doch diese Signale seien zu schwach für die genaue Untersuchung der kleinen Wassercluster, erklärt Thomas Zeuch. Dagegen liefere die Schwingung zwischen dem Sauerstoffatom und dem Wasserstoffatom eines Moleküls ein viel kräftigeres Signal. Die Frequenz dieser Molekülschwingung liegt im Infraroten, also bei langwelligem Licht, und die Wirkung dieser Strahlung misst die Apparatur. Entscheidend ist dabei, dass sich das Infrarotsignal durch die Wasserstoffbrückenbindung zwischen dem Wasserstoffatom des einen und dem Sauerstoffatom eines anderen Moleküls deutlich verschiebt, sobald sich das sechseckige Kristallgitter bildet. Das ist der Fingerabdruck des echten Wassereises, den die Göttinger Wissenschaftler nun erstmals an Clustern aus einigen hundert Wassermolekülen nachweisen konnten.

Diese sogenannte Infrarotspektroskopie solcher kleiner Cluster funktioniert allerdings nur mit einigen Tricks. Zuerst erzeugt das Experiment einzelne, kalte Cluster. Diese Cluster fliegen dann mit mehr als Schallgeschwindigkeit durch eine Kammer, in der sie jeweils ein einzelnes Natriumatom aufsammeln. Anschließend fliegen sie etwa 240 Mikrosekunden (Millionstel Sekunden) lang weiter bis zur eigentlichen Messung. Das angedockte Natriumatom sei dabei ganz entscheidend, erläutert Thomas Zeuch. Es erlaubt nämlich, die Cluster in der gewünschten Größe, zum Beispiel eben aus 275 Wassermolekülen, sanft zu ionisieren, mit einem elektrischen Feld zu sortieren und gezielt zu messen.

Die nächsten Versuche sollen klären, wie andere Stoffe kristallisieren

Das Natriumatom am Wassercluster hat zudem eine zweite, ziemlich komplexe Funktion. „Es ist eine Art Fotopapier“, sagt Zeuch, um seine Rolle zu veranschaulichen. „Wir bestrahlen die Cluster mit dem Natriumatom zuerst mit dem Infrarotlicht“, sagt der Physikochemiker: „Dann ,entwickeln‘ wir es mit einem Laserpuls aus ultraviolettem Licht.“ Allerdings gibt das Natriumatom bei dieser Kombination von Laserlicht verschiedener Frequenz natürlich kein räumliches Foto: Stattdessen liefert es ein Infrarotspektrum des winzigen Wasserclusters. Dieser entscheidende Trick war der Durchbruch.

Das Grundprinzip des Experiments hatte Udo Buck am Max-Planck-Institut für Dynamik und Selbstorganisation entwickelt. Heute steht die Apparatur bei Thomas Zeuch an der Uni Göttingen. Die Wissenschaftler dieser Gruppe haben sie zusammen mit theoretischer Unterstützung aus Prag so weiter entwickelt, dass die Erforschung von Clustern aus einigen hundert Wassermolekülen erst möglich wurde. Die Forscher wollen mit Experimenten nun auch die Kristallisation anderer Stoffe und deren Oberflächeneigenschaften – wo möglich – auf´s Molekül genau untersuchen. Zeuch ist von dem neuen Experimentierverfahren aber auch deshalb so begeistert, weil es sich nicht nur auf Wassercluster anwenden lässt. Es eröffnet ein völlig neues Experimentierfeld. RW/PH

Originalveröffentlichung: Cristoph C. Pradzynski, Richard M. Forck, Thomas Zeuch, Petr Slavíèek, Udo Buck
A fully size-resolved perspective on the crystallization of water clusters. Science 21. September 2012, Doi: 10.1126/science.XXXXX

Kontaktadressen:
Dr. Thomas Zeuch
Georg-August-Universität Göttingen
Fakultät für Chemie – Institut für Physikalische Chemie
Tammannstraße 6, 37077 Göttingen, Telefon (0551) 39-3126
E-Mail: tzeuch1@gwdg.de, Internet: http://www.uni-pc.gwdg.de/zeuch

Prof. Dr. Udo Buck
Max-Planck-Institut für Dynamik und Selbstorganisation
Tel.: +49 551 5176-572
E-Mail: ubuck@gwdg.de

Thomas Richter | idw
Weitere Informationen:
http://www.uni-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise