Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleinste Vehikel für die Medizin

05.11.2014

Mikro- und Nanoschwimmer lassen sich durch Medien steuern, die Körperflüssigkeiten ähneln

 

Mikro- oder gar Nano-Roboter könnten im menschlichen Organismus künftig einmal medizinische Dienste verrichten. Diesem Ziel sind Forscher, unter anderem vom Max-Planck-Institut für Intelligente Systeme in Stuttgart, nun einige Schritte näher gekommen.


Mikroschwimmer in Muschelform: Nach dem Vorbild der Schalentiere hat ein Team um Stuttgarter Max-Planck-Forscher ein winziges U-Boot konstruiert, das schematisch gezeigt ist. Mithilfe kleiner M

Grafik: Alejandro Posada/MPI für Intelligente Systeme


Nano-U-Boot mit Propellerantrieb: Die Schraube versehen die Stuttgarter Forscher mit Magneten und versetzen sie durch ein Magnetfeld in Drehung, sodass sie sich durch eine Flüssigkeit schraubt

Bild: Debora Schamel/MPI für Intelligente Systeme

Es ist ihnen nämlich gelungen, Schwimmkörper zu konstruieren, die erstmals gleich zweierlei erfüllen: Sie wären klein genug für einen Einsatz in Körperflüssigkeiten oder sogar in einzelnen Körperzellen. Und sie sind so gebaut, dass sie sich in Flüssigkeiten durch ihre eigene Bewegung selbstständig fortbewegen könnten.

1966 erschien der Film „Die phantastische Reise“. Ein U-Boot wird darin samt Personal so sehr verkleinert, dass es sich durch einen menschlichen Körper bewegen und die Besatzung im Gehirn eine Operation durchführen kann. Bis heute ist das Sciencefiction, und der Transport eines OP-Teams zu einem Krankheitsherd wird es sicher auch bleiben.

U-Boote, die sich durch den Körper manövrieren lassen, könnten dennoch von großem Nutzen sein: Sie könnten einen pharmazeutischen Wirkstoff gezielt an einen bestimmten Punkt etwa in der Netzhaut bringen. Oder ein medizinisches Gerät punktgenau im Organismus platzieren. Und sie könnten es ermöglichen, eine Gentherapie gezielt an einer bestimmten Zelle vorzunehmen.

Wenn es nach Peer Fischer, Leiter der Arbeitsgruppe „Mikro-, Nano- und Molekulare Systeme“ am Max-Planck-Institut für Intelligente Systeme in Stuttgart, geht, können Mediziner in absehbarer Zukunft auf Mikro- oder sogar Nano-Roboter zurückgreifen, um solche Aufgaben zu erfüllen. Die kleinen Helfer sollen die gewünschten Ziele im Körper akkurat ansteuern, ohne dass ein größerer operativer Eingriff nötig wäre.

Im Wasser käme eine Mikromuschel mit symmetrischen Bewegungen nicht voran

Bei diesem Vorhaben gibt es allerdings zwei grundlegende Herausforderungen. Natürlich müssen solche Vehikel ausreichend klein sein, um zum Beispiel per Spritze in den Augapfel injiziert werden zu können. Zum anderen müssen sie sich, einmal in den Körper gebracht, dort auch in der gewünschten Weise und Richtung fortbewegen können. In beiderlei Hinsicht melden Forschergruppen um Peer Fischer nun Fortschritte.

Gemeinsam mit Forschern am Technion in Israel und an der TU Dortmund hat die Stuttgarter Gruppe in einer aktuellen Arbeit eine Art künstliche Muschel entwickelt, die nur wenige Hundert Mikrometer groß ist. Diese haben die Wissenschaftler so konstruiert, dass sie sich in Testflüssigkeiten durch einfaches Öffnen und Schließen der Muschelschalen fortbewegt.

Das ist nicht so selbstverständlich, wie es zunächst klingt. „Die Muschel ist ja nur wenige Male größer, als ein menschliches Haar dick ist“, erklärt Fischer. „Für die ist eine Flüssigkeit wie Wasser also etwa so zäh wie für uns Honig oder gar Teer.“ Und bei so hoher Reibung in Flüssigkeiten gilt eigentlich, dass symmetrische Bewegungen, wie eben das gleichförmige Öffnen und Schließen einer Muschelschale, unter dem Strich kein Fortkommen bewirken. Das Vor und Zurück durch die jeweils gegensätzlichen Bewegungen heben sich schlicht auf.

In Wasser wäre die Mikromuschel aus diesem Grund in der Tat nicht vom Fleck gekommen. Doch weil die Forscher langfristig den Einsatz in biologischen Medien im Auge haben, testeten sie ihren Schwimmer direkt auch in dafür geeigneten Modellflüssigkeiten. Und die weisen im Gegensatz zu Wasser Besonderheiten auf. „Die meisten Körperflüssigkeiten haben die Eigenschaft, dass sich ihre Viskosität je nach Bewegungsgeschwindigkeit ändert“, sagt Fischer. „In Gelenkflüssigkeit zum Beispiel ordnen sich Hyaluronsäure-Moleküle im Ruhezustand zu netzwerkartigen Strukturen an, die für eine hohe Viskosität sorgen. Doch sobald sich etwas durch diese Flüssigkeit bewegt, bricht das Netzwerk auf – und das Fluid wird dünnflüssiger.“

Eine magnetische Steuerung öffnet und schließt die Muschel

Genau dieses Verhalten machten sich die Wissenschaftler bei ihrer Muschel zunutze. Konkret steuerten sie die Muschelschalen so, dass sie sich sehr viel schneller öffnen als schließen. „Dieses zeitlich asymmetrische Bewegungsmuster führt dazu, dass die Flüssigkeit während des Öffnens dünnflüssiger ist als beim anschließenden Schließen“, sagt Doktorand Tian Qiu vom Stuttgarter Team. Damit ist die Distanz, die die Muschel beim Öffnen zurücklegt, auch eine andere als die, um die sie sich beim Schließen wieder zurückbewegt. Netto kommt sie also voran. Es sei das erste Mal überhaupt, dass sich ein künstliches Gebilde dieser Größenordnung mit symmetrischen Bewegungszyklen in Flüssigkeiten fortbewegte, so Tian Qiu.

Um ihren Mikroschwimmer überhaupt derart kontrollieren zu können, arbeiteten sie in der Achse, die das Gelenk zwischen beiden Muschelschalen bildet, magnetische Seltenerdmetalle ein. Über ein von außen angelegtes Magnetfeld regulierten sie dann, wie sich die Muschelschalen öffnen und schließen – letztlich also, wie sie sich fortbewegen. Die Erkenntnis der Stuttgarter Forscher, dass mikroskopische Vehikel durch manche Flüssigkeiten auch mit symmetrische Bewegungen schwimmen, gilt aber nicht nur für magnetisch angetriebene Tauchfahrzeuge. Vielmehr lässt sich ein Miniatur-U-Boot in Muschelform auch durch einen Aktuator bewegen, der etwa auf eine Temperaturveränderung reagiert.

Die eigentliche Muschel bestand aus einem relativ harten Kunststoff. Hier lag die besondere Herausforderung darin, die Muschelschalen einerseits extrem dünn und andererseits robust genug für die „Ruderbewegungen“ in einem vergleichsweise zähen Medium zu gestalten.

Die Wissenschaftler, die ihre Arbeit nun in Nature Communications vorstellten, wollen ihre Mikroschwimmer nun in konkreten biologischen Flüssigkeiten testen. „Uns interessiert im nächsten Schritt zum Beispiel, ob wir diesen Roboter auch durch eine extrazelluläre Matrix, also durch ein Gewebe, steuern können“, so Peer Fischer.

Eine Nanoschraube wirkt wie ein Propeller

Für die Stuttgarter Gruppe um Peer Fischer war es schon der zweite Miniatur-Roboter, den sie innerhalb kurzer Zeit der Fachwelt vorstellten. Bereits in der September-Ausgabe von ACS Nano hatten sie gemeinsam mit Kollegen aus Israel ein sogar noch deutlich kleineres Vehikel präsentiert. Dabei handelt es sich um eine gläserne korkenzieherähnliche Schraube. Solche schraubenartigen Strukturen gibt es schon länger. Allerdings war ihre Herstellung bis vor kurzem auf Größenordnungen im Bereich von zehn und mehr Mikrometern begrenzt. Jetzt war es den Forschern aus Stuttgart zum ersten Mal gelungen, einen entsprechenden Propeller mit einem Durchmesser um die 100 Nanometer, also einem Zehntel Mikrometer herzustellen. In der Länge misst der Miniatur-Schwimmer 400 Nanometer. Bei der Fabrikation ihres Nanopropellers nutzten die Wissenschaftler eine Technik, die sie selbst entwickelt haben. Dabei dampfen sie das Silicat-Material Schicht für Schicht in geometrisch definierter Weise auf.

Um den kleinen Roboter antreiben zu können, versahen die Wissenschaftler ihn stellenweise mit magnetischem Nickel. Legten sie dann ein Magnetfeld an und ließen es um eine bestimmte Achse rotieren, versetzen sie auch die nickelhaltige Nanoschraube in Rotation. Und damit genau in die Bewegung, mit der sich der Propeller in einer Flüssigkeit voranbewegen kann.

Wie bei ihrer Mikromuschel aus Kunststoff, so zielen die Visionen der Forscher auch bei ihrem gläsernen „Nano-U-Boot“ auf medizinische Anwendungen. Als Testmedium wählten sie daher ebenfalls Hyaluronsäure. „Dabei handelt es sich um ein Polysaccharid, dessen Moleküle im Verbund gelartige und damit hochviskose Strukturen bilden“, erklärt die Mitautorin Debora Schamel, die am Stuttgarter Max-Planck-Institut promoviert. Im menschlichen Organismus kommt es nicht nur in Gelenkflüssigkeit, sondern etwa auch in vielen Bindegeweben vor.

Bisherige künstliche Gebilde waren noch zu groß, um das eng geflochtene Netzwerk der Hyaluronan-Moleküle zu durchdringen. Debora Schamel freut sich daher über den Fortschritt ihres Teams: „Erstmals haben wir jetzt einen Nano-Roboter, der klein genug ist, um auch durch diese engen Maschen zu schwimmen.“ Das winzige U-Boot könnte aber auch in anderen Medien als Gelenkflüssigkeit zum Einsatz kommen. Weitere Flüssigkeiten, in denen solche Nanovehikel zum Beispiel Wirkstoffe transportieren könnten, seien der Glaskörper im Auge, Schleimhäute – oder auch Blut. „Theoretisch ist bei der Größe unserer Konstruktion sogar eine Verwendung innerhalb von Zellen denkbar“, so Fischer vorsichtig. Dazu freilich müsste noch ein Weg gefunden werden, die Nano-U-Boote auch in die Zellen einzuschleusen.

Bis ähnliche Therapien, wie sie „Die phantastische Reise“ von 1966 schildert, Wirklichkeit werden, bleibt also noch einiges zu tun.

KH


Weitere Informationen:

http://www.is.mpg.de/de/fischer

Annette Stumpf | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten