Kleines Molekül mit hohem Lichtschutzfaktor

Cyanobakterien im Fotobioreaktor bei unterschiedlichen Lichtintensitäten. Quelle: Dominik Kopp

Cyanobakterien sind Organismen, die Fotosynthese betreiben und ihre Energie mithilfe von Licht gewinnen. Dabei produzieren sie Sauerstoff. Zu viel Sonnenstrahlung kann die empfindlichen Fotosynthesesysteme in den Zellen zerstören.

Forscherinnen und Forscher wussten bislang wenig über die molekularen Mechanismen, die dafür ausschlaggebend sind, wie Cyanobakterien auf Schwankungen in der Lichtintensität reagieren. Sie nahmen an, dass vor allem Signalsysteme, die aus Proteinen bestehen, solche komplexen Regulationsprozesse steuern.

Die Arbeitsgruppen um Prof. Dr. Annegret Wilde und Prof. Dr. Wolfgang Hess vom Institut für Biologie III der Universität Freiburg haben gezeigt, dass die Natur dieses Problem mithilfe des spezialisierten RNA-Moleküls PsrR1 löst.

Es besteht aus nur 131 Nukleotiden und ist somit fünf- bis zehnmal kleiner als durchschnittliche mRNA-Moleküle. PsrR1 übernimmt eine zentrale Funktion beim Umbau des Fotosyntheseapparates, wenn zu viel Licht auf die Zellen auftrifft. Die Forschungsergebnisse wurden in der Fachzeitschrift „The Plant Cell“ veröffentlicht.

Die Wissenschaftlerinnen und Wissenschaftler haben mit ihrer Entdeckung gezeigt, dass kurze RNA-Moleküle nicht nur in höheren Organismen eine wichtige Rolle spielen, sondern auch in einzelligen Bakterien. PsrR1 ist ein so genanntes regulatorisches RNA-Molekül:

Es hat einen Einfluss darauf, welche Boten-RNAs (mRNA) abgelesen werden, um ein Protein herzustellen. Die regulatorische RNA bindet an verschiedene Abschnitte der mRNA, die das Abbild eines DNA-Stückes ist. Durch diese Bindung können sich die Translation, bei der Proteine in Zellen hergestellt werden, und die mRNA-Stabilität verringern.

Dies führt dazu, dass weniger Pigmente und Proteine des Fotosystems I synthetisiert werden. Das Fotosystem ist Teil des Fotosyntheseapparates, der in Cyanobakterien und Pflanzen die Energie des Sonnenlichtes in chemische Energie umwandelt. Somit schützt PsrR1 den Fotosyntheseapparat vor Lichtstress.

Cyanobakterien kommen überall dort vor, wo es Licht gibt: in der Antarktis, in Wüstengebieten, Flüssen und Seen, aber auch an Hauswänden und in Aquarien. Sie bevölkerten die Erde schon vor mehr als drei Milliarden Jahren und reicherten die Atmosphäre durch ihren Stoffwechsel mit Sauerstoff an.

In den Ozeanen, die 71 Prozent der Erdoberfläche bedecken, sind sauerstoffproduzierende Cyanobakterien die größte Gruppe fotosynthetisch aktiver Organismen. Die ökologische Funktion von Cyanobakterien bildet somit einen Grundpfeiler der Biosphäre.

Mithilfe der neuen Erkenntnisse soll die Organismengruppe für eine biotechnologische Nutzung erschlossen werden. Das Potenzial der Cyanobakterien ist umfangreich und schließt ihre mögliche Nutzung als Bioenergielieferanten, Nahrungs- und Futtermittel, Produzenten von medizinischen Präparaten und Kosmetika ein.

Originalpublikation: J. Georg, D. Dienst, N. Schürgers, T. Wallner, D. Kopp, D. Stazic, E. Kuchmina, S. Klähn, H. Lokstein, W.R. Hess, A. Wilde (2014): The Small Regulatory RNA SyR1/PsrR1 Controls Photosynthetic Functions in Cyanobacteria. Plant Cell. 2014 Sep 23. pii: tpc.114.129767. [Epub ahead of print] PubMed PMID: 25248550.

Kontakt:
Prof. Dr. Annegret Wilde
Institut für Biologie III
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203- 97828
E-Mail: annegret.wilde@biologie.uni-freiburg.de

Prof. Dr. Wolfgang Hess
Institut für Biologie III
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203- 2796
E-Mail: wolfgang.hess@biologie.uni-freiburg.de

Media Contact

Rudolf-Werner Dreier idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-freiburg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer