Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine RNA als Baukasten

11.11.2010
Stress gibt es auch bei krank machenden Bakterien – etwa wenn sie vom Immunsystem ihres Wirtes attackiert werden. Wie Salmonellen auf eine solche Belastung reagieren, beschreiben Würzburger Infektionsbiologen in der Zeitschrift PNAS.

Salmonellen sind Bakterien, die beim Menschen heftigen Durchfall auslösen können. Wenn sie sich im Verdauungstrakt breit machen, bleiben sie nicht unbehelligt: Das Immunsystem greift die Eindringlinge unter anderem mit Peptiden an. Das sind kleine Eiweißkörper, die Löcher in die äußere Hülle der Bakterien reißen.


Zwei Salmonellen: Das obere Bakterium ist unversehrt, das untere wurde mit antimikrobiellen Peptiden behandelt. Seine Außenhülle zerfällt, Material aus dem Zellinneren läuft in die Umgebung. Fotos: Institut für Molekulare Infektionsbiologie

Sobald ihre Hülle beschädigt ist, reagieren die Salmonellen: Unter anderem produzieren sie dann ein kleines RNA-Molekül (RybB-sRNA), das in der Bakterienzelle schlagartig die Synthese von etwa zehn Proteinen unterbindet. Dabei handelt es sich allesamt um Proteine, die für einen Einsatz in der Außenhülle der Bakterien vorgesehen sind.

Ein sinnvoller Mechanismus: „Die Salmonellen helfen sich damit ganz schnell. Weil ihre äußere Membran löchrig ist, würden die Proteine dort keinen Halt finden und nicht funktionieren“, erklärt Kai Papenfort vom Institut für Molekulare Infektionsbiologie der Universität Würzburg. Letzten Endes verhindert das kleine RNA-Molekül also eine Verschwendung von Protein-Ressourcen.

RNA-Anfang bindet Vorstufen der Proteine

Wie aber schafft es die kleine RNA, auf einen Schlag die Produktion gleich mehrerer Proteine zu regulieren? Diese Frage beantworten die Würzburger Forscher in der aktuellen Ausgabe der Zeitschrift PNAS: „Der Anfangsbereich des sRNA-Moleküls bindet die Transkripte, das ist so eine Art Vorstufe all dieser Proteine“, sagt Institutsleiter Professor Jörg Vogel. „Sobald das geschehen ist, stoppt die Produktion.“ Zum Beweis übertrugen die Forscher den Anfangsbereich auf andere RNA-Moleküle. Auch diese brachten daraufhin die Herstellung der zehn Proteine ins Stocken.

In der Evolution der Bakterien nicht verändert

Erstmals haben die Würzburger Forscher damit gezeigt: Auch kleine RNA-Moleküle besitzen klar abgrenzbare Bereiche, denen sich eine regulierende Funktion zuweisen lässt. Bislang war das nur für Proteine bekannt, nicht aber für „einfachere“ Moleküle wie RNA. „Auch RNA besteht aus funktionellen Stücken, die sich nach dem Baukastenprinzip neu anordnen lassen“, so Vogel.

Bei dem regulierenden Bereich handelt es sich zudem um ein Stück RNA, das sich bei der Evolution der Bakterien nicht verändert hat. Das heißt: „Diese RNA gibt es nicht nur bei Salmonellen, sondern auch bei vielen anderen krankheitserregenden Bakterien, und sie übt immer dieselbe Funktion aus“, so Kai Papenfort.

Eine molekulare Struktur, die in der Evolution gleich geblieben ist – das deutet darauf hin, dass es sich um etwas sehr Wichtiges handelt. Um einen Faktor womöglich, den Bakterien beim Infektionsprozess unbedingt brauchen. Der möglicherweise beim Auslösen der Krankheit eine Rolle spielt. Ob das so ist, wollen die Würzburger Forscher als nächstes klären. Am Ende könnte sich der Anfangsbereich der RybB-sRNA als potenzieller Angriffspunkt für neue Medikamente erweisen.

Grundlagenforschung über kleine RNA

Das Team von Professor Jörg Vogel betreibt Grundlagenforschung über kleine RNA-Moleküle, deren Ketten aus ungefähr 100 Bausteinen bestehen (small RNA, kurz: sRNA). Dieser spezielle RNA-Typus reguliert Lebensvorgänge in Bakterien und höher entwickelten Zellen. Als Modellorganismen benutzen die Würzburger Wissenschaftler neben Salmonellen auch Helicobacter, ein Bakterium, das Magenkrebs auslösen kann.

„Evidence for an autonomous 5‘ target recognition domain in an Hfq-associated small RNA”, Kai Papenfort, Marie Bouvier, Franziska Mika, Cynthia M. Sharma, and Jörg Vogel; PNAS, online publiziert am 8. November 2010, doi 10.1073/pnas.1009784107

Kontakt

Dr. Kai Papenfort, Institut für Molekulare Infektionsbiologie der Universität Würzburg, T (0931) 31-81230, kai.papenfort@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie