Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Moleküle gegen altersbedingte Erkrankungen

21.02.2017

Ein internationales Forschungsnetzwerk unter Leitung des Bayreuther Biochemikers Prof. Dr. Clemens Steegborn hat erstmals kleine Moleküle hergestellt, die in der Lage sind, das Enzym Sirtuin 6 zu aktivieren. Zugleich ist es gelungen, wesentliche strukturelle Voraussetzungen dieser Prozesse aufzuklären. Die neuen Forschungsergebnisse ermöglichen die Entwicklung von Wirkstoffen, die beim Kampf gegen altersbedingte Erkrankungen helfen können.

Sirtuine sind Enzyme, die im Organismus vielfältige Steuerungsaufgaben übernehmen. Insbesondere regulieren sie den Energiehaushalt und Stressreaktionen. Im Organismus des Menschen gibt es insgesamt sieben verschiedene Sirtuine, sie werden als "Sirt1" bis "Sirt7" bezeichnet. Eine Aktivierung dieser Enzyme könnte dazu beitragen, altersbedingte Krankheiten – wie beispielsweise manche Krebserkrankungen – zu verhindern oder zu behandeln.


Eines der aktivierenden Moleküle, die von der Forschergruppe synthetisiert wurden, bindet an Sirtuin 6. Der chemische Name dieses Aktivators: „4-(pyridin-3-yl)-4,5-dihydropyrrolo[1,2-α]quinoxaline“.

Grafik: Clemens Steegborn.


Prof. Dr. Clemens Steegborn, Universität Bayreuth

Foto: Christian Wißler

Bisher waren lediglich Substanzen bekannt, die imstande sind, das Enzym Sirt1 zu aktivieren. Einer Forschergruppe um Prof. Dr. Clemens Steegborn an der Universität Bayreuth ist es jetzt aber in enger Zusammenarbeit mit Wissenschaftlern an der Martin- Luther-Universität Halle, der Universität La Sapienza in Rom und der Stanford University/USA gelungen, aktivierende Substanzen auch für Sirt6 herzustellen. Diese kleinen Moleküle docken an Sirt6 und steigern dadurch die Aktivität dieses Enzyms. Es spaltet Acetylgruppen ab, zum Beispiel von Nukleosomen, welche die Aktivität von Genen beeinflussen.

Strukturelle Voraussetzungen für zielgenaue Wirkstoffe

Die Wissenschaftler haben herausgefunden, wo genau die im Labor synthetisierten kleinen Moleküle sich mit Sirt6 verbinden. „Sirt6 besitzt einen einzigartigen Kanal, der von der Oberfläche des Enzyms zum katalytischen Zentrum führt und eine von außen gut zugängliche Bindungstasche aufweist. Dadurch sind alle strukturellen Voraussetzungen dafür gegeben, dass die kleinen Aktivatoren ungehindert andocken können. In anderen Sirtuinen hingegen können sie sich, von wenigen Ausnahmen abgesehen, nicht einnisten“, erklärt Prof. Steegborn.

„Unsere neuen Erkenntnisse sind daher ein vielversprechender Ausgangspunkt für die Entwicklung zielgenauer Wirkstoffe, welche die weitere biomedizinische Forschung, aber auch therapeutische Maßnahmen – beispielsweise zur Bekämpfung von Tumorerkrankungen – unterstützen können“, so der Bayreuther Biochemiker.

Unterschiedliche Wirkungen der Substanzen

Bei den aktivierenden Molekülen für Sirt6 handelt es sich um chemische Verbindungen auf der Basis von Pyrrolo[1,2-α]quinoxaline. Insgesamt 14 solcher Variationen haben die Wissenschaftler in Bayreuth, Halle, Rom und Stanford in ihre Untersuchungen einbezogen. Es stellte sich heraus, dass sich die Moleküle in ihrer Wirkung auf Sirt6 teilweise signifikant voneinander unterscheiden. Einige Substanzen aktivieren Sirt6, indem sie die Acetylabspaltung fördern; die Wirkung anderer Substanzen beschränkt sich darauf, eine andere Aktivität dieses Enzyms zu unterdrücken.

Daher scheint es mithilfe dieser Substanzen künftig möglich zu sein, Sirt6 nicht nur zielgerichtet zu aktivieren, sondern auch ein genaueres ‚Feintuning‘ der dadurch verursachten Stoffwechsel-Prozesse zu erreichen. „Die von uns hergestellten Substanzen und die neuen Erkenntnissen zu ihrer Interaktion mit Sirt6 bieten einzigartige Voraussetzungen für ein zielgerichtetes Design von Wirkstoffen. Nachdem wir die Strukturen dieser Interaktion aufklären konnten, sind wir jetzt erstmals in der Lage, das Enzym Sirtuin 6 sehr spezifisch mit Wirkstoffen zu beeinflussen“, sagt Prof. Steegborn.

Forschungsförderung

Die Oberfrankenstiftung und die Deutsche Forschungsgemeinschaft (DFG) haben die Bayreuther Forschungsarbeiten an Sirtuinen mit 92.000 Euro bzw. mit 336.000 Euro gefördert. Mitarbeiter am Elektronenspeicherring BESSY II des Helmholtz-Zentrums Berlin haben die Bayreuther Forschungsgruppe dabei unterstützt, Interaktionen zwischen Sirtuinen und aktivierenden Substanzen sowie die daran beteiligten molekularen Strukturen aufzuklären.

Veröffentlichung:

Weijie You, Dante Rotili, Tie-Mei Li, Christian Kambach, Marat Meleshin, Mike Schutkowski, Katrin F. Chua, Antonello Mai, and Clemens Steegborn, Structural Basis of Sirtuin 6 Activation by Synthetic Small Molecules,
in: Angewandte Chemie International Edition 2017 Jan 19;56(4):1007-1011.
DOI: 10.1002/anie.201610082.

Kontakt:

Prof. Dr. Clemens Steegborn
Lehrstuhl für Biochemie
Universität Bayreuth
95440 Bayreuth
Telefon: +49 (0) 921 / 55-7830 und 55-7831
E-Mail: clemens.steegborn@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungsnachrichten

Veränderungen in der Geschäftsführung von Phoenix Contact

22.09.2017 | Unternehmensmeldung

Tanzende Elektronen verlieren das Rennen

22.09.2017 | Physik Astronomie