Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Löcher in der Hülle lassen Bakterien dahinsiechen

09.03.2012
Wie das natürliche Antibiotikum Dermcidin aus Schweiß Mikroorganismen zusetzt

Die Haut bildet eine Barriere zwischen dem Körper und der Umwelt. Zusätzlichen Schutz bietet die Immunabwehr über natürliche Antibiotika, die mögliche Krankheitserreger wie Bakterien oder Pilze abtöten können. Eins dieser Antibiotika ist Dermcidin, das in den Schweißdrüsen des Menschen hergestellt und auf der Haut gegen eine ganze Reihe von Mikroorganismen aktiv wird.

Nun hat ein Forscherteam unter Beteiligung des Universitätsklinikums Tübingen und des Max-Planck-Instituts für Entwicklungsbiologie ein Modell entworfen, wie Dermcidin seine antibiotische Wirkung im schwierigen Milieu des Schweißes entfaltet: Sein aktiver Bestandteil taucht in die Bakterienhülle ein und bildet dort winzige Löcher, die den Bakterien ein langsames, aber sicheres Ende bereiten.

Es ist an sich nicht ungewöhnlich, dass antibiotische Stoffe Mikroorganismen durch die Bildung von Poren in der äußeren Hülle töten. Viele der bekannten natürlichen Antibiotika auf der Körperoberfläche tragen eine positive Ladung und können sich besonders gut an die überwiegend negativ geladene Hüllmembran der Bakterien anlagern. Sie bilden dort Kanäle und zersetzen die Membran, schnell tritt der Tod der Bakterienzelle ein. Bei Dermcidin hatten Forscher bisher vermutet, dass der Wirkmechanismus prinzipiell anders aussehen müsste. Dermcidin wird auf der Haut gespalten und der aktive Bestandteil, DCD-1L genannt, ist insgesamt negativ geladen. Außerdem sterben die angegriffenen Bakterien langsam, sie können sogar noch Notfallprogramme in Gang setzen.

In einer neuen Studie hat ein Forscherteam dies noch einmal überprüft. Dazu gehörten Maren Paulmann, Ines Wanke und Birgit Schittek von der Universitäts-Hautklinik Tübingen und Forscher des Max-Planck-Instituts für Entwicklungsbiologie unter der Leitung von Dirk Linke und Michael Habeck, deren Zusammenarbeit über den an der Universität Tübingen angesiedelten Sonderforschungsbereich 766 „Die bakterielle Zellhülle“ zustande kam, sowie weitere Wissenschaftler vom Forschungszentrum Borstel und dem Karlsruher Institut für Technologie. Bei früheren Untersuchungen mit dem Elektronenmikroskop und speziellen Markierungsexperimenten hatte sich kein Hinweis auf Porenbildung in der Bakterienmembran durch DCD-1L gefunden. Erst elektrische Messungen an künstlichen Membranen ergaben nun, dass geladene Teilchen hindurchkommen, allerdings nur sehr langsam. Das ließ auf sehr kleine Löcher schließen.

Der Ablauf könnte den Ergebnissen der Forscher zufolge so aussehen: Das insgesamt negativ geladene DCD-1L-Molekül hat ein positiv geladenes Ende, das zur Anheftung an die Bakterienmembran ausreicht. Durch die Wechselwirkung mit der Membran im stark sauren und salzigen Schweißmilieu nimmt das bis dahin unstrukturierte DCD-1L eine Schraubenform an, und es können sich mehrere DCD-1L-Moleküle spontan zusammenlagern. Stabilisiert durch positiv geladene Zinkionen, die vermehrt im Schweiß vorkommen, bildet der DCD-1L-Komplex winzige Kanäle durch die Bakterienhülle. Sie sind so schmal, dass einzelne geladene Teilchen gerade hindurchpassen. Doch mit der Zeit bricht durch den Ladungsausgleich das Spannungsgefälle zwischen dem Innern des Bakteriums und der Umgebung zusammen, das die Grundlage für lebenswichtige Transport- und Stoffwechselprozesse bildet. Die Bakterienzelle stirbt.

Körpereigene Antibiotika wie DCD-1L aus Dermcidin werden auch im Zusammenhang mit der Hauterkrankung Neurodermitis erforscht. Diese Patienten leiden unter vermehrt auftretenden Hautinfektionen. Interessanterweise fanden sich bei diesen Patienten geringere Mengen an DCD-1L und verwandten Stoffen aus Dermcidin im Schweiß als bei Gesunden.

Originalpublikation:
Maren Paulmann, Thomas Arnold, Dirk Linke, Suat Özdirekcan, Annika Kopp, Thomas Gutsmann, Hubert Kalbacher, Ines Wanke, Verena J. Schuenemann, Michael Habeck, Jochen Bürck, Anne S. Ulrich, Birgit Schittek: Structure-activity analysis of the dermcidin-derived peptide DCD-1L, an anionic antimicrobial peptide present in human sweat. The Journal of Biological Chemistry, Band 287, Ausgabe 11, 8434-8443, 9. März 2012.
Ansprechpartner:
Prof. Birgit Schittek
Universitäts-Hautklinik Tübingen
Tel.: 07071 29-80832
E-Mail: birgit.schittek(at)med.uni-tuebingen.de
Dr. Dirk Linke
Max-Planck-Institut für Entwicklungsbiologie
Tel.: 07071 601- 357
E-Mail: dirk.linke(at)tuebingen.mpg.de

Janna Eberhardt | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics