Kleine Eiweißmoleküle als potenzielle Antibiotika: Peptid MP196 greift auf mehreren Ebenen an

Bakterium Bacillus subtilis © RUB, Bild: Wenzel

Genaue Wirkweise muss für die Zulassung als Arzneimittel bekannt sein

Das Team um Julia Bandow, Leiterin der RUB-Nachwuchsgruppe Mikrobielle Antibiotikaforschung, untersuchte das Peptid MP196, stellvertretend für die Gruppe der sehr kleinen positiv geladenen Peptide, die aus vier bis zehn Aminosäuren bestehen können.

Frühere Studien zeigten, dass MP196 effizient gegen verschiedene Bakterien wirkt, unter anderem gegen die besonders problematischen multiresistenten Keime, die häufig in Krankenhäusern auftreten und zum Beispiel eine Blutvergiftung auslösen können. Wie genau MP196 seine Wirkung entfaltet, war aber nicht klar. Um jedoch für eine neue Substanz eine Zulassung als Arzneimittel zu bekommen, muss der Wirkmechanismus im Detail bekannt sein.

Peptid stört Zellwandsynthese und Zellatmung

Diese Lücke schlossen die Biologen. Sie wiesen nach, dass sich das Peptid MP196 in die bakterielle Zellmembran einlagert. Dadurch verdrängt es bakterielle Zellmembranproteine, die lebenswichtige Prozesse regulieren.

Zwei Prozesse sind besonders betroffen: MP196 stört die Synthese der Zellwand, also der äußeren Hülle, die die Zellmembran umgibt und dem Bakterium Stabilität verleiht. Außerdem behindert es die Zellatmung und als Folge davon die Produktion des Energiespeichermoleküls ATP. Das wiederum führt zu einem Energiemangel in der Bakterienzelle, der den Aufbau aller möglichen für das Bakterium lebenswichtigen Moleküle verhindert.

Entwicklung von Resistenzen gegen MP196 ist besonders kompliziert

„MP196 stört also eine ganze Palette von zellulären Prozessen, die an der Membran stattfinden“, sagt Julia Bandow. „Vermutlich ist das der Grund, warum eine Resistenzentwicklung gegen dieses Peptid schwierig ist.“ Die Forscher sind zuversichtlich, dass es mit MP196-ähnlichen Peptiden möglich ist, Medikamente herzustellen, die gezielt bestimmte Klassen von Bakterien angreifen, ohne menschliche Zellen zu schädigen.

Denn wie MP196 mit der Zellmembran interagiert, hängt davon ab, welche Fettsäuremoleküle in der Membran vorhanden sind. Und diese Membranzusammensetzung variiert nicht nur zwischen Mensch und Bakterien, sondern auch zwischen unterschiedlichen Klassen von Bakterien.

Das Projekt „Innovative Antibiotika aus NRW“

Die Studie war Teil des Projekts „Innovative Antibiotika aus NRW“ (InA), welche das Land Nordrhein-Westfalen gemeinsam mit der Europäischen Union im Rahmen von „BIO.NRW.red“ förderte, durch den Europäischen Fonds für Regionale Entwicklung „Investition in unsere Zukunft“. Gemeinsam mit universitären und Industriepartnern untersuchen die Mikrobiologen und Chemiker der RUB auch organometallische Verbindungen als potenzielle Antibiotika (http://aktuell.ruhr-uni-bochum.de/pm2013/pm00312.html.de).

Titelaufnahme

M. Wenzel et al. (2014): Small cationic antimicrobial peptides delocalize peripheral membrane proteins, Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1319900111

Weitere Informationen

Prof. Dr. Julia Bandow, Nachwuchsgruppe Mikrobielle Antibiotikaforschung, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-23102, E-Mail: julia.bandow@rub.de

Angeklickt

Ausführlicher Beitrag zur Antibiotika-Forschung an der RUB mit Bildern
http://rubin.rub.de/de/herbst-2013/bakterien-unter-beschuss

InA-Projektwebseite
http://www.ruhr-uni-bochum.de/ina/

Film der Bundesregierung zum InA-Projekt
http://www.youtube.com/watch?feature=player_embedded&v=ZRiWaYbZ1LE

Media Contact

Dr. Julia Weiler idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer