Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Dornfortsätze von Nervenzellen können lokale Reize selbständig verarbeiten

23.01.2015

Nervenzellen (Neuronen) verfügen über ein viel größeres Repertoire zur Informationsverarbeitung als bisher angenommen. Zu diesem Schluss kommen Forscher aus Regensburg und München nach der Untersuchung von Nervenzellen des Riechkolbens bei Säugetieren. Das Team um Prof. Dr. Veronica Egger vom Institut für Zoologie der Universität Regensburg konnte nachweisen, dass „Spines“ (Dornfortsätze) auf den Dendritenbäumen der Nervenzellen lokale Reize selbständig verarbeiten können. Unabhängig vom Erregungszustand der restlichen Zelle operieren sie dabei als „Mini-Neuronen“. Die Studie wurde jetzt in der Fachzeitschrift „NEURON“ veröffentlicht (DOI: 10.1016/j.neuron.2014.12.051).

Nervenzellen verständigen sich untereinander durch elektrische Signale. Dafür nehmen sie über ihre baumartig verzweigten Dendriten Signale anderer Nervenzellen auf, verarbeiten diese und leiten ein entsprechendes „Aktionspotential“ entlang dünner Fortsätze – den Axonen – an andere Neuronen weiter.


Schematische Darstellung des Netzwerks des Bulbus olfactorius (Riechkolben) mit einzelnen lokal aktiven Körnerzell-Spines (rote Sterne).

Bildnachweis: Universität Regensburg – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Auf ihren Dendriten tragen die meisten Nervenzellen des Säugergehirns überdies sogenannte Dornfortsätze, auch „Spines“ genannt. Dabei handelt es sich um kleine Ausstülpungen, auf denen sich die Kontaktstellen (Synapsen) zu den anderen Neuronen hauptsächlich befinden. Die konkrete Funktion der „Spines“ war bislang nur teilweise verstanden, wobei einzelne Theoretiker bereits in den 1960er Jahren vorgeschlagen haben, dass sie eine lokal begrenzte elektrische Verstärkung der eintreffenden synaptischen Signale ermöglichen könnten. Dies würde die Möglichkeiten der Informationsverarbeitung von Nervenzellen deutlich erweitern.

Das Forscherteam um Prof. Egger hat am Beispiel der „Spines“ in einem besonderen Typus von Nervenzellen – Körnerzellen des Bulbus olfactorius – erstmals experimentell nachgewiesen, dass eine solche lokale Signalverstärkung tatsächlich möglich ist. Der zugrundeliegende Mechanismus, ein auf einen einzigen „Spine“ beschränktes Aktionspotential – konnte in enger Zusammenarbeit mit Theoretikern um Prof. Dr. Andreas Herz und Dr. Martin Stemmler von der LMU München und dem Bernstein Center for Computational Neuroscience in München aufgeklärt werden.

Im Fall der Körnerzellen des Riechkolbens von Säugern hat die lokale Signalverstärkung eine besondere Bedeutung: Diese Neuronen besitzen kein Axon, sondern können vielmehr über ihre dendritischen „Spines“ synaptische Botenstoffe sowohl empfangen als auch freisetzen. Ähnliche reziproke Synapsen bzw. Kontaktstellen zwischen Nervenzellen finden sich allerdings auch in anderen Hirnarealen, beispielsweise in der Netzhaut und im Thalamus.

Der jetzt nachgewiesene Verstärkungsmechanismus beruht darauf, dass die „Spines“ der Körnerzellen über spannungsabhängige Proteine verfügen, die sonst vorwiegend in Axonen vorzufinden sind. Damit können sie unabhängig vom Zustand der restlichen Körnerzelle als „Mini-Nervenzellen“ operieren. Die Forscher aus Regensburg und München erwarten vergleichbare Ergebnisse für die anderen Typen reziproker Synapsen im Nervensystem von Säugern. Die Leistungsfähigkeit zur Informationsverarbeitung bei Nervenzellen ist also weit komplexer, als bislang vermutet.

Das Forschungsprojekt wurde vom Bundesministerium für Bildung und Forschung gefördert (Förderkennzeichen 01GQ1104 und 01GQ1410A).

Ansprechpartnerin für Medienvertreter:
Prof. Dr. Veronica Egger
Universität Regensburg
Institut für Zoologie
Professur für Neurophysiologie
Tel.: 0941 943-3118
Veronica.Egger@biologie.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten