Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Dornfortsätze von Nervenzellen können lokale Reize selbständig verarbeiten

23.01.2015

Nervenzellen (Neuronen) verfügen über ein viel größeres Repertoire zur Informationsverarbeitung als bisher angenommen. Zu diesem Schluss kommen Forscher aus Regensburg und München nach der Untersuchung von Nervenzellen des Riechkolbens bei Säugetieren. Das Team um Prof. Dr. Veronica Egger vom Institut für Zoologie der Universität Regensburg konnte nachweisen, dass „Spines“ (Dornfortsätze) auf den Dendritenbäumen der Nervenzellen lokale Reize selbständig verarbeiten können. Unabhängig vom Erregungszustand der restlichen Zelle operieren sie dabei als „Mini-Neuronen“. Die Studie wurde jetzt in der Fachzeitschrift „NEURON“ veröffentlicht (DOI: 10.1016/j.neuron.2014.12.051).

Nervenzellen verständigen sich untereinander durch elektrische Signale. Dafür nehmen sie über ihre baumartig verzweigten Dendriten Signale anderer Nervenzellen auf, verarbeiten diese und leiten ein entsprechendes „Aktionspotential“ entlang dünner Fortsätze – den Axonen – an andere Neuronen weiter.


Schematische Darstellung des Netzwerks des Bulbus olfactorius (Riechkolben) mit einzelnen lokal aktiven Körnerzell-Spines (rote Sterne).

Bildnachweis: Universität Regensburg – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Auf ihren Dendriten tragen die meisten Nervenzellen des Säugergehirns überdies sogenannte Dornfortsätze, auch „Spines“ genannt. Dabei handelt es sich um kleine Ausstülpungen, auf denen sich die Kontaktstellen (Synapsen) zu den anderen Neuronen hauptsächlich befinden. Die konkrete Funktion der „Spines“ war bislang nur teilweise verstanden, wobei einzelne Theoretiker bereits in den 1960er Jahren vorgeschlagen haben, dass sie eine lokal begrenzte elektrische Verstärkung der eintreffenden synaptischen Signale ermöglichen könnten. Dies würde die Möglichkeiten der Informationsverarbeitung von Nervenzellen deutlich erweitern.

Das Forscherteam um Prof. Egger hat am Beispiel der „Spines“ in einem besonderen Typus von Nervenzellen – Körnerzellen des Bulbus olfactorius – erstmals experimentell nachgewiesen, dass eine solche lokale Signalverstärkung tatsächlich möglich ist. Der zugrundeliegende Mechanismus, ein auf einen einzigen „Spine“ beschränktes Aktionspotential – konnte in enger Zusammenarbeit mit Theoretikern um Prof. Dr. Andreas Herz und Dr. Martin Stemmler von der LMU München und dem Bernstein Center for Computational Neuroscience in München aufgeklärt werden.

Im Fall der Körnerzellen des Riechkolbens von Säugern hat die lokale Signalverstärkung eine besondere Bedeutung: Diese Neuronen besitzen kein Axon, sondern können vielmehr über ihre dendritischen „Spines“ synaptische Botenstoffe sowohl empfangen als auch freisetzen. Ähnliche reziproke Synapsen bzw. Kontaktstellen zwischen Nervenzellen finden sich allerdings auch in anderen Hirnarealen, beispielsweise in der Netzhaut und im Thalamus.

Der jetzt nachgewiesene Verstärkungsmechanismus beruht darauf, dass die „Spines“ der Körnerzellen über spannungsabhängige Proteine verfügen, die sonst vorwiegend in Axonen vorzufinden sind. Damit können sie unabhängig vom Zustand der restlichen Körnerzelle als „Mini-Nervenzellen“ operieren. Die Forscher aus Regensburg und München erwarten vergleichbare Ergebnisse für die anderen Typen reziproker Synapsen im Nervensystem von Säugern. Die Leistungsfähigkeit zur Informationsverarbeitung bei Nervenzellen ist also weit komplexer, als bislang vermutet.

Das Forschungsprojekt wurde vom Bundesministerium für Bildung und Forschung gefördert (Förderkennzeichen 01GQ1104 und 01GQ1410A).

Ansprechpartnerin für Medienvertreter:
Prof. Dr. Veronica Egger
Universität Regensburg
Institut für Zoologie
Professur für Neurophysiologie
Tel.: 0941 943-3118
Veronica.Egger@biologie.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie