Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie klar ist unser Blick ins Hirn?

16.03.2011
Wissenschaftler zeigen den großen Einfluss von Filtern auf Ergebnisse von Gehirnscans

Bildgebende Verfahren sind aus der Hirnforschung nicht mehr wegzudenken: Der Blick durch die Schädeldecke auf das aktive Gehirn ist zu einem wichtigen Hilfsmittel in Forschung und klinischer Anwendung geworden.


Der Filter macht den Unterschied: In denselben Ausgangsdaten erscheint eine Gehirnregion (eingekreist) mal aktiv, mal inaktiv – allein abhängig von der „Siebgröße“ des eingesetzten Datenfilters. (Bild: Universität Freiburg)

Bevor jedoch die bunten Bilder Aufschluss über die Aktivität des Gehirns geben können, müssen die zugrundeliegenden Daten in einem aufwändigen Prozess verarbeitet werden. Freiburger Wissenschaftler und Kollegen konnten nun zeigen, wie sehr die dabei eingesetzten Filter das Bild beeinflussen und zu widersprüchlichen Ergebnissen führen können.

In der aktuellen Ausgabe der Fachzeitschrift Human Brain Mapping weisen Dr. Tonio Ball vom Bernstein Center Freiburg und Kollegen der Universitäten Oldenburg, Basel und Magdeburg nach, dass die Ergebnisse bildgebender Verfahren wie der funktionellen Magnetresonanztomographie (fMRI) stark variieren können – abhängig davon, wie die Ausgangsdaten gefiltert werden. Der Einsatz von Filtern ist nötig, um aussagekräftige Informationen vom ebenfalls aufgezeichneten Rauschen in den Daten zu trennen. Diese Filter haben unterschiedliche „Siebgrößen“ und machen Aktivitätsmuster, die sich über unterschiedlich große Bereiche des Gehirns erstrecken, überhaupt erst sichtbar. In den meisten Studien wird mit einer einzigen Siebgröße gefiltert, die jedoch von Fall zu Fall unterschiedlich sein kann.

Tonio Ball und Kollegen untersuchten systematisch den Einfluss dieser Filtergrößen auf die erhaltenen Bilder der Gehirnaktivität. In einem Experiment mussten Personen Musikstücke durch Tastendruck bewerten, während sie in einem fMRI-Scanner lagen – eine Aufgabe, bei der die für Hören, Sehen und Armbewegungen zuständigen Hirnregionen aktiv sind. Das überraschende Resultat: Die Filter beeinflussten bei unterschiedlichen Siebgrößen stark das Ergebnis der Analysen, die eine erhöhte Aktivität mal in der einen, mal in der anderen Gehirnregion anzeigten. Schon kleinste Änderungen der Filtergröße ließen Hirnbereiche entweder aktiv oder inaktiv erscheinen. Dieser Effekt kann letztendlich zu völlig unterschiedlichen Deutungen eines Gehirnscans führen. Die Wissenschaftler um Tonio Ball heben daher hervor, wie wichtig es bei fMRI-Studien ist, in Zukunft die Wirkung der Filter mehr zu berücksichtigen – damit der Blick ins Gehirn nicht unabsichtlich verschwimmt.

Ball, T., Breckel, T. P., Mutschler, I., Aertsen, A., Schulze-Bonhage, A., Hennig, J. und Speck, O. (2011) Variability of fMRI-response patterns at different spatial observation scales. Human Brain Mapping, doi: 10.1002/hbm.21274

Kontakt:
Dr. med. Tonio Ball
Bernstein Center Freiburg /
Epilepsiezentrum, Universitätsklinikum Freiburg
Tel.: 0761/270-9316
Fax: 0761/270-9331
E-Mail: tonio.ball@uniklinik-freiburg.de

Eva Opitz | Uni Freiburg
Weitere Informationen:
http://www.uniklinik-freiburg.de

Weitere Berichte zu: Brain Filter Gehirnscan Hirn Human Brain Mapping Human vaccine Mapping

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics