Wie klar ist unser Blick ins Hirn?

Der Filter macht den Unterschied: In denselben Ausgangsdaten erscheint eine Gehirnregion (eingekreist) mal aktiv, mal inaktiv – allein abhängig von der „Siebgröße“ des eingesetzten Datenfilters. (Bild: Universität Freiburg)<br>

Bildgebende Verfahren sind aus der Hirnforschung nicht mehr wegzudenken: Der Blick durch die Schädeldecke auf das aktive Gehirn ist zu einem wichtigen Hilfsmittel in Forschung und klinischer Anwendung geworden.

Bevor jedoch die bunten Bilder Aufschluss über die Aktivität des Gehirns geben können, müssen die zugrundeliegenden Daten in einem aufwändigen Prozess verarbeitet werden. Freiburger Wissenschaftler und Kollegen konnten nun zeigen, wie sehr die dabei eingesetzten Filter das Bild beeinflussen und zu widersprüchlichen Ergebnissen führen können.

In der aktuellen Ausgabe der Fachzeitschrift Human Brain Mapping weisen Dr. Tonio Ball vom Bernstein Center Freiburg und Kollegen der Universitäten Oldenburg, Basel und Magdeburg nach, dass die Ergebnisse bildgebender Verfahren wie der funktionellen Magnetresonanztomographie (fMRI) stark variieren können – abhängig davon, wie die Ausgangsdaten gefiltert werden. Der Einsatz von Filtern ist nötig, um aussagekräftige Informationen vom ebenfalls aufgezeichneten Rauschen in den Daten zu trennen. Diese Filter haben unterschiedliche „Siebgrößen“ und machen Aktivitätsmuster, die sich über unterschiedlich große Bereiche des Gehirns erstrecken, überhaupt erst sichtbar. In den meisten Studien wird mit einer einzigen Siebgröße gefiltert, die jedoch von Fall zu Fall unterschiedlich sein kann.

Tonio Ball und Kollegen untersuchten systematisch den Einfluss dieser Filtergrößen auf die erhaltenen Bilder der Gehirnaktivität. In einem Experiment mussten Personen Musikstücke durch Tastendruck bewerten, während sie in einem fMRI-Scanner lagen – eine Aufgabe, bei der die für Hören, Sehen und Armbewegungen zuständigen Hirnregionen aktiv sind. Das überraschende Resultat: Die Filter beeinflussten bei unterschiedlichen Siebgrößen stark das Ergebnis der Analysen, die eine erhöhte Aktivität mal in der einen, mal in der anderen Gehirnregion anzeigten. Schon kleinste Änderungen der Filtergröße ließen Hirnbereiche entweder aktiv oder inaktiv erscheinen. Dieser Effekt kann letztendlich zu völlig unterschiedlichen Deutungen eines Gehirnscans führen. Die Wissenschaftler um Tonio Ball heben daher hervor, wie wichtig es bei fMRI-Studien ist, in Zukunft die Wirkung der Filter mehr zu berücksichtigen – damit der Blick ins Gehirn nicht unabsichtlich verschwimmt.

Ball, T., Breckel, T. P., Mutschler, I., Aertsen, A., Schulze-Bonhage, A., Hennig, J. und Speck, O. (2011) Variability of fMRI-response patterns at different spatial observation scales. Human Brain Mapping, doi: 10.1002/hbm.21274

Kontakt:
Dr. med. Tonio Ball
Bernstein Center Freiburg /
Epilepsiezentrum, Universitätsklinikum Freiburg
Tel.: 0761/270-9316
Fax: 0761/270-9331
E-Mail: tonio.ball@uniklinik-freiburg.de

Media Contact

Eva Opitz Uni Freiburg

Weitere Informationen:

http://www.uniklinik-freiburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer