Klappe zu, Fliege tot

Sobald das Insekt eine der haarfeinen Borsten in der Falle berührt, klappt diese wie ein Fangeisen zu, die Beute sitzt fest – und wird verdaut.

Minoru Ueda und ein Forscherteam von den Universitäten Tohoku, Hirosaki und Hiroshima (Japan) haben nun zwei chemische Faktoren gefunden, die das Zuklappen der Fallen auslösen.

Wie die Wissenschaftler in der Zeitschrift ChemBioChem berichten, lassen diese, künstlich zugeführt, die Fallen auch ohne Stimulation der Borsten zuschnappen.

Die Venusfliegenfalle hat ein „Gedächtnis“: Um nicht auf jeden „falschen Alarm“ zu reagieren, klappt die Pflanze ihre Falle nicht gleich bei der ersten Brührung ihrer Borsten zu, sondern es müssen mindestens zwei Reize innerhalb von 30 Sekunden stattfinden. Dann aber geht es schnell, damit die Beute nicht noch im letzten Augenblick entkommen kann.

Wie funktioniert dieses Gedächtnis der Fallenblätter? Die Hypothese ist, dass bestimmte chemische Botenstoffe als Antwort auf jeden Reiz der Borsten schrittweise ausgeschüttet werden und akkumulieren. Erst wenn eine bestimmte Schwellenkonzentration erreicht ist, wird – ähnlich wie bei der Reizleitung in unseren Nervenzellen – über das Öffnen eines Ionenkanals ein Aktionspotenzial ausgelöst, welches dann die Fallenblätter zuklappen lässt.

Die Forscher klonierten einen genetisch einheitlichen Venusfliegenfallen-Stamm. Sie stellten einen Extrakt daraus her und trennten ihn in verschiedene Fraktionen auf. Einzelne Fallen schnitten sie ab und stellten sie mit ihren Stängeln in Lösungen der verschiedenen Extraktfraktionen. Die Pflanzenteile sind in der Lage, die Flüssigkeit aufzusaugen. Manche Fraktionen lösten das Zuschnappen der Fallen aus, ohne dass deren Borsten gereizt wurden. Die aktiven Fraktionen trennten die Wissenschaftler mit verschiedenen Methoden immer weiter auf und testeten sie.

Am Ende gelang es den Forschern, zwei Substanzen zu isolieren, die das Zuschnappen der Fallen auslösen. Eine davon ließ sich mithilfe verschiedener Analysemethoden identifizieren. Die aktive Substanz scheint das Kaliumsalz eines glucosehaltigen Abkömmlings der Jasmonsäure zu sein, eines verbreiteten pflanzlichen Hormons. Der zweite isolierte Botenstoff hat eine höhere Molmasse. Er besteht aus einer Vielzahl verschiedener Zuckerbausteine, die sich wegen der bisher nur sehr geringen isolierten Mengen nicht komplett identifizieren ließen.

Versuche mit verschiedenen Konzentrationen und Mengen botenstoffhaltiger Lösungen ergaben, dass das Schließen der Fallen nicht von einer bestimmten Konzentration der Botenstoffe abhängt, sondern allein von der absoluten Menge der aufgenommenen Substanz. Dies untermauert die Hypothese, dass ein Schwellenwert überschritten werden muss, um das Zuschnappen der Venusfliegenfalle auszulösen.

Author: Minoru Ueda, Tohoku University, Sendai (Japan), http://www.chem.tohoku.ac.jp/english/laboratories/organic/organic_chemistry_e.html

Title: Trap-Closing Chemical Factors of the Venus Flytrap (Dionaea muscipulla Ellis)

ChemBioChem 2010, 11, No. 17, 2378–2383, Permalink to the article: http://dx.doi.org/10.1002/cbic.201000392

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer