Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kläranlage mit Düsenantrieb

19.12.2013
Schwimmende Mikromotoren aus Platin und Eisen befreien Wasser mit Wasserstoffperoxid besonders effizient von organischen Schadstoffen

Organische Schadstoffe könnten sich künftig auf elegante Weise aus Abwässern entfernen lassen. Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart haben schwimmende Mikromotoren entwickelt, die organische Substanzen im Wasser abbauen.


Mikroröhrchen für die Abwasserreinigung: Die etwa 500 Mikrometer langen Röhrchen bestehen aus einer äußeren Eisen- und einer inneren Platinschicht. An der Eisenschicht zersetzt Wasserstoffperoxid, das dem Wasser zugesetzt wurde, organische Schadstoffe zu Kohlendioxid und Wasser. An der inneren Platinschicht zerfällt Wasserstoffperoxid in Sauerstoff und Wasser. So wird das Röhrchen zum Düsentriebwerk: Die aus dem Röhrchen strömenden Sauerstoffblasen schieben es in eine Richtung. Die schwimmenden Kläranlagen reinigen Wasser etwa zwölf mal schneller als Eisenröhrchen ohne den Antrieb.

© MPI für Intelligente Systeme

Die mobilen Mikrokläranlagen bestehen aus einem Metallröhrchen mit einer äußeren Eisen- und einer inneren Platinschicht. Als Treibstoff nutzen sie Wasserstoffperoxid, mit dem das Wasser versetzt wird.

Das Oxidationsmittel bewirkt nicht nur, dass eine Mikromaschine wie eine Unterwasserdüse Fahrt aufnimmt, es reagiert an der Oberfläche des Eisenröhrchens auch mit den Schadstoffen.

Viele organische Verunreinigungen lassen sich durch gängige Methoden der Wasseraufbereitung kaum entfernen. Sie in der sogenannten Fenton-Reaktion mit Wasserstoffperoxid an einer Eisenoberfläche zu zersetzen, gilt jedoch als wirkungsvolles Mittel gegen die Substanzen. Wie die Stuttgarter Forscher nun nachwiesen, reinigt ein Schwarm der schwimmenden Mikrokläranlagen das Wasser etwa zwölf Mal schneller als reine Eisenröhrchen, die sich nicht aktiv durch das Wasser bewegen können.

Mikroröhrchen für die Abwasserreinigung: Die etwa 500 Mikrometer langen Röhrchen bestehen aus einer äußeren Eisen- und einer inneren Platinschicht. An der Eisenschicht zersetzt Wasserstoffperoxid, das dem Wasser zugesetzt wurde, organische Schadstoffe zu Kohlendioxid und Wasser. An der inneren Platinschicht zerfällt Wasserstoffperoxid in Sauerstoff und Wasser. So wird das Röhrchen zum Düsentriebwerk: Die aus dem Röhrchen strömenden Sauerstoffblasen schieben es in eine Richtung. Die schwimmenden Kläranlagen reinigen Wasser etwa zwölf mal schneller als Eisenröhrchen ohne den Antrieb.

Vielen organischen Schadstoffen lässt sich mit den gängigen Methoden der Wasseraufbereitung kaum beikommen. Mineralöle, Pestizide, Lösungsmittel, organische Farben und halogenierte Verbindungen lassen sich weder mit chlorhaltigen Chemikalien oder Ozon noch durch Ausflockung effizient aus dem Wasser entfernen. Als sehr wirksam gegen die hartnäckigen Stoffe hat sich jedoch die Fenton-Methode erwiesen. Dabei zersetzt Wasserstoffperoxid, das dem Abwasser zugegeben wird, die Substanzen zu Kohlendioxid und Wasser. Die mehrstufige Reaktion wird von Eisen-II-Ionen (Fe2+) katalysiert. Forscher um Samuel Sánchez des Max-Planck-Instituts für Intelligente Systeme haben nun eine mobile Variante dieser Abwasserreinigung entwickelt: Sie haben Mikromotoren aus Platin mit einer Reinigungsfunktion ausgestattet, indem sie die winzigen Triebwerke mit Eisen ummantelten. Im Wasser bilden sich auf der Eisenoberfläche die Eisen-II-Ionen, die als Katalysator bei der Schadstoffbeseitigung gebraucht werden.

Die 500 Mikrometer langen schwimmenden Kläranlagen stellten die Forscher mit einer seit wenigen Jahren bekannten Technik her: Sie dampften Eisen in einer 100 bis 200 Nanometer dicken Schicht auf kleine rechteckige Lackflächen, mit denen sie ein Glasplättchen versehen hatten. Anschließend brachten sie eine Platinschicht von einem Nanometer Dicke auf das Eisen auf. Wegen der unterschiedlichen mechanischen Eigenschaften der Metalle rollte sich die Doppelschicht von selbst auf, als die Forscher den Lack wegätzten. „Auf diese Weise lassen sich die multifunktionalen Röhrchen in großer Stückzahl herstellen“, sagt Samuel Sánchez, der am Stuttgarter Max-Planck-Institut eine Forschungsgruppe leitet.

Sauerstoffblasen machen ein Mikroröhrchen zum Düsentriebwerk

Die Platinschicht wird zum Motor der Röhrchen, weil sie wie das Eisen eine Reaktion des Wasserstoffperoxids katalysiert, wenn auch eine andere. „Wasserstoffperoxid ist sozusagen das Benzin für unsere Mini-U-Boote“, erklärt Lluis Soler aus der Forschungsgruppe. Das Oxidationsmittel zersetzt sich an seiner Oberfläche nämlich zu Wasser und Sauerstoff, der kleine Blasen bildet. Wenn die Sauerstoffblasen aus dem Inneren der Röhrchen entweichen, wird das Röhrchen zum Düsentriebwerk: Es setzt sich in Bewegung, weil aus den beiden Öffnungen der Röhrchen unterschiedliche Gasmengen austreten. Sobald das Röhrchen Fahrt aufgenommen hat, strömen die Bläschen nur noch aus einer seiner Öffnungen, sodass der Rückstoß es gemächlich in die entgegengesetzte Richtung schiebt.

Auf die Idee, die winzigen Düsentriebwerke mit einem Eisenmantel zu versehen und so zur schwimmenden Kläranlage zu machen, verfielen die Stuttgarter Forscher, als sie über ein anderes Problem nachdachten. Mit Mikro- und Nanomotoren verbindet sich nämlich die Vision, Medikamente gezielt in kranke Organe, etwa zu Tumorzellen, transportieren. Dort könnten sie sich mit Nanokanülen durch Zellmembranen bohren und Wirkstoffe direkt in Zellen injizieren. Diesem Ziel steht bisher jedoch eine großes Hindernis im Weg: Wasserstoffperoxid und andere Stoffe, welche die bisher entwickelten Motoren für ihren Antrieb brauchen, schaden Lebewesen. Das brachte die Forscher auf den Gedanken, die Mikromotoren dort einzusetzen, wo ihr Treibstoff keinen Schaden anrichtet, sondern sogar nützlich ist.

Ein Mittel gegen Farbrückstände und Pestizide

Da die Eisenschicht zudem magnetisch ist, lassen sich die Röhren theoretisch auch zielgenau an schwer zugängliche Verschmutzungen steuern und nach vollendeter Reinigung wieder vollständig aus der Flüssigkeit entfernen. Und überschüssiges Wasserstoffperoxid bereitet bei der Wasseraufbereitung auch keine Probleme, da es durch Licht zu Wasser und Sauerstoff abgebaut wird, wenn auch ohne Katalysator nur langsam.

„Wir wollten Mikromotoren konstruieren, die eine sinnvolle Anwendung haben“, erklärt Sánchez die Motivation der Arbeitsgruppe. Er schränkt allerdings ein, dass die Methode bisher nur im Kleinen funktioniere und der Weg zur industriellen Anwendung noch weit sei. Mit ihrer Arbeit wollen die Stuttgarter Wissenschaftler den Mikromotoren jedoch einen Weg zu künftige Anwendungen in der Umwelttechnik bereiten. Und die könnten Lluis Soler zufolge so aussehen: „Ich könnte mir gut vorstellen, dass Wasser auf diese Weise eines Tages von Farbstoffrückständen aus der Textilindustrie oder Pestiziden aus der Landwirtschaft befreit wird.“

Ansprechpartner
Dr. Samuel Sánchez
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-1846
E-Mail: Sanchez@is.mpg.de
Originalpublikation
Lluís Soler, Veronika Magdanz, Vladimir M. Fomin, Samuel Sánchez und Oliver G. Schmidt
Self-Propelled Micromotors for Cleaning Polluted Water
ACS Nano, 1 November 2013; DOI: 10.1021/nn405075d

Dr. Samuel Sánchez | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7676965/mikroroehrchen_abwasser_reinigung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Mechanismus der Gen-Inaktivierung könnte vor Altern und Krebs schützen
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht Alge im Eismeer - Genom einer antarktischen Meeresalge entschlüsselt
23.02.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie