Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kläranlage mit Düsenantrieb

19.12.2013
Schwimmende Mikromotoren aus Platin und Eisen befreien Wasser mit Wasserstoffperoxid besonders effizient von organischen Schadstoffen

Organische Schadstoffe könnten sich künftig auf elegante Weise aus Abwässern entfernen lassen. Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart haben schwimmende Mikromotoren entwickelt, die organische Substanzen im Wasser abbauen.


Mikroröhrchen für die Abwasserreinigung: Die etwa 500 Mikrometer langen Röhrchen bestehen aus einer äußeren Eisen- und einer inneren Platinschicht. An der Eisenschicht zersetzt Wasserstoffperoxid, das dem Wasser zugesetzt wurde, organische Schadstoffe zu Kohlendioxid und Wasser. An der inneren Platinschicht zerfällt Wasserstoffperoxid in Sauerstoff und Wasser. So wird das Röhrchen zum Düsentriebwerk: Die aus dem Röhrchen strömenden Sauerstoffblasen schieben es in eine Richtung. Die schwimmenden Kläranlagen reinigen Wasser etwa zwölf mal schneller als Eisenröhrchen ohne den Antrieb.

© MPI für Intelligente Systeme

Die mobilen Mikrokläranlagen bestehen aus einem Metallröhrchen mit einer äußeren Eisen- und einer inneren Platinschicht. Als Treibstoff nutzen sie Wasserstoffperoxid, mit dem das Wasser versetzt wird.

Das Oxidationsmittel bewirkt nicht nur, dass eine Mikromaschine wie eine Unterwasserdüse Fahrt aufnimmt, es reagiert an der Oberfläche des Eisenröhrchens auch mit den Schadstoffen.

Viele organische Verunreinigungen lassen sich durch gängige Methoden der Wasseraufbereitung kaum entfernen. Sie in der sogenannten Fenton-Reaktion mit Wasserstoffperoxid an einer Eisenoberfläche zu zersetzen, gilt jedoch als wirkungsvolles Mittel gegen die Substanzen. Wie die Stuttgarter Forscher nun nachwiesen, reinigt ein Schwarm der schwimmenden Mikrokläranlagen das Wasser etwa zwölf Mal schneller als reine Eisenröhrchen, die sich nicht aktiv durch das Wasser bewegen können.

Mikroröhrchen für die Abwasserreinigung: Die etwa 500 Mikrometer langen Röhrchen bestehen aus einer äußeren Eisen- und einer inneren Platinschicht. An der Eisenschicht zersetzt Wasserstoffperoxid, das dem Wasser zugesetzt wurde, organische Schadstoffe zu Kohlendioxid und Wasser. An der inneren Platinschicht zerfällt Wasserstoffperoxid in Sauerstoff und Wasser. So wird das Röhrchen zum Düsentriebwerk: Die aus dem Röhrchen strömenden Sauerstoffblasen schieben es in eine Richtung. Die schwimmenden Kläranlagen reinigen Wasser etwa zwölf mal schneller als Eisenröhrchen ohne den Antrieb.

Vielen organischen Schadstoffen lässt sich mit den gängigen Methoden der Wasseraufbereitung kaum beikommen. Mineralöle, Pestizide, Lösungsmittel, organische Farben und halogenierte Verbindungen lassen sich weder mit chlorhaltigen Chemikalien oder Ozon noch durch Ausflockung effizient aus dem Wasser entfernen. Als sehr wirksam gegen die hartnäckigen Stoffe hat sich jedoch die Fenton-Methode erwiesen. Dabei zersetzt Wasserstoffperoxid, das dem Abwasser zugegeben wird, die Substanzen zu Kohlendioxid und Wasser. Die mehrstufige Reaktion wird von Eisen-II-Ionen (Fe2+) katalysiert. Forscher um Samuel Sánchez des Max-Planck-Instituts für Intelligente Systeme haben nun eine mobile Variante dieser Abwasserreinigung entwickelt: Sie haben Mikromotoren aus Platin mit einer Reinigungsfunktion ausgestattet, indem sie die winzigen Triebwerke mit Eisen ummantelten. Im Wasser bilden sich auf der Eisenoberfläche die Eisen-II-Ionen, die als Katalysator bei der Schadstoffbeseitigung gebraucht werden.

Die 500 Mikrometer langen schwimmenden Kläranlagen stellten die Forscher mit einer seit wenigen Jahren bekannten Technik her: Sie dampften Eisen in einer 100 bis 200 Nanometer dicken Schicht auf kleine rechteckige Lackflächen, mit denen sie ein Glasplättchen versehen hatten. Anschließend brachten sie eine Platinschicht von einem Nanometer Dicke auf das Eisen auf. Wegen der unterschiedlichen mechanischen Eigenschaften der Metalle rollte sich die Doppelschicht von selbst auf, als die Forscher den Lack wegätzten. „Auf diese Weise lassen sich die multifunktionalen Röhrchen in großer Stückzahl herstellen“, sagt Samuel Sánchez, der am Stuttgarter Max-Planck-Institut eine Forschungsgruppe leitet.

Sauerstoffblasen machen ein Mikroröhrchen zum Düsentriebwerk

Die Platinschicht wird zum Motor der Röhrchen, weil sie wie das Eisen eine Reaktion des Wasserstoffperoxids katalysiert, wenn auch eine andere. „Wasserstoffperoxid ist sozusagen das Benzin für unsere Mini-U-Boote“, erklärt Lluis Soler aus der Forschungsgruppe. Das Oxidationsmittel zersetzt sich an seiner Oberfläche nämlich zu Wasser und Sauerstoff, der kleine Blasen bildet. Wenn die Sauerstoffblasen aus dem Inneren der Röhrchen entweichen, wird das Röhrchen zum Düsentriebwerk: Es setzt sich in Bewegung, weil aus den beiden Öffnungen der Röhrchen unterschiedliche Gasmengen austreten. Sobald das Röhrchen Fahrt aufgenommen hat, strömen die Bläschen nur noch aus einer seiner Öffnungen, sodass der Rückstoß es gemächlich in die entgegengesetzte Richtung schiebt.

Auf die Idee, die winzigen Düsentriebwerke mit einem Eisenmantel zu versehen und so zur schwimmenden Kläranlage zu machen, verfielen die Stuttgarter Forscher, als sie über ein anderes Problem nachdachten. Mit Mikro- und Nanomotoren verbindet sich nämlich die Vision, Medikamente gezielt in kranke Organe, etwa zu Tumorzellen, transportieren. Dort könnten sie sich mit Nanokanülen durch Zellmembranen bohren und Wirkstoffe direkt in Zellen injizieren. Diesem Ziel steht bisher jedoch eine großes Hindernis im Weg: Wasserstoffperoxid und andere Stoffe, welche die bisher entwickelten Motoren für ihren Antrieb brauchen, schaden Lebewesen. Das brachte die Forscher auf den Gedanken, die Mikromotoren dort einzusetzen, wo ihr Treibstoff keinen Schaden anrichtet, sondern sogar nützlich ist.

Ein Mittel gegen Farbrückstände und Pestizide

Da die Eisenschicht zudem magnetisch ist, lassen sich die Röhren theoretisch auch zielgenau an schwer zugängliche Verschmutzungen steuern und nach vollendeter Reinigung wieder vollständig aus der Flüssigkeit entfernen. Und überschüssiges Wasserstoffperoxid bereitet bei der Wasseraufbereitung auch keine Probleme, da es durch Licht zu Wasser und Sauerstoff abgebaut wird, wenn auch ohne Katalysator nur langsam.

„Wir wollten Mikromotoren konstruieren, die eine sinnvolle Anwendung haben“, erklärt Sánchez die Motivation der Arbeitsgruppe. Er schränkt allerdings ein, dass die Methode bisher nur im Kleinen funktioniere und der Weg zur industriellen Anwendung noch weit sei. Mit ihrer Arbeit wollen die Stuttgarter Wissenschaftler den Mikromotoren jedoch einen Weg zu künftige Anwendungen in der Umwelttechnik bereiten. Und die könnten Lluis Soler zufolge so aussehen: „Ich könnte mir gut vorstellen, dass Wasser auf diese Weise eines Tages von Farbstoffrückständen aus der Textilindustrie oder Pestiziden aus der Landwirtschaft befreit wird.“

Ansprechpartner
Dr. Samuel Sánchez
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-1846
E-Mail: Sanchez@is.mpg.de
Originalpublikation
Lluís Soler, Veronika Magdanz, Vladimir M. Fomin, Samuel Sánchez und Oliver G. Schmidt
Self-Propelled Micromotors for Cleaning Polluted Water
ACS Nano, 1 November 2013; DOI: 10.1021/nn405075d

Dr. Samuel Sánchez | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7676965/mikroroehrchen_abwasser_reinigung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Fettleber produziert Eiweiße, die andere Organe schädigen können
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Auf dem Weg zu künstlichem Gewebe- und Organersatz aus dem 3D-Drucker
18.08.2017 | Ernst-Abbe-Hochschule Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten