Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Killer-T-Zellen“ sind nur im Team gegen Viren stark

10.02.2016

MHH-Forscher: Killer-T-Zellen müssen kooperieren, um virusinfizierte Zellen effektiv zu eliminieren / Wichtig für Zelltherapie und Impfstoff-Entwicklung / „Immunity“ veröffentlicht

Zellen des Immunsystems müssen eng zusammenarbeiten, um unseren Körper vor Krankheitserregern zu schützen. Verschiedene Arten von Immunzellen stehen dabei Bakterien und Viren „Auge in Auge“ gegenüber.


v.l.: Dr. Stephan Halle und Professor Dr. Reinhold Förster und eine 2-Photonenmikroskop-Aufnahme eines Lymphknotens

Foto:MHH/Kaiser

Und wohl niemand erledigt seinen Job so präzise und elegant wie die zytotoxischen T-Lymphozyten (Killer-T-Zellen), die Virus-infizierte Körperzellen erkennen und gezielt abtöten. Neue Impfstoffe und Zelltherapeutika sollen genau diesen Mechanismus nutzen – aber noch ist vieles über die Arbeitsweise dieses „James Bond des Immunsystems“ unbekannt.

Ein Team des Instituts für Immunologie der Medizinischen Hochschule Hannover (MHH) um Professor Dr. Reinhold Förster und Dr. Stephan Halle, PhD, sowie Mitarbeiter um Professor Dr. Martin Messerle aus dem MHH-Institut für Virologie berichtet nun aktuell in der Fachzeitschrift Immunity, wie effektiv Killer-T-Zellen Virus-infizierte Zielzellen abtöten (http://www.cell.com/immunity/home).

Mit Hilfe der sogenannten 2-Photonen-Mikroskopie gelang es den Forschern, erstmals individuelle Killer-T-Zellen bei ihrer Arbeit in virusinfizierten Geweben im Zeitraffer zu filmen.

Man nahm allgemein an, dass Killer T-Zellen im Körper schnell hintereinander immer neue Zielzellen erkennen und alleine töten könnten. In mehreren unterschiedlichen Infektionsmodellen haben die MHH-Forscher nun jedoch gesehen, dass Killer-T-Zellen nur effektiv sind, wenn sie als „Team“ von drei oder mehr Killer-T-Zellen gleichzeitig oder in sehr kurzem zeitlichen Abstand dieselbe infizierte Zelle attackieren.

„Offensichtlich unterscheiden sich einzelne Killer T-Zellen deutlich in ihrer Wirksamkeit, und nur durch einen synchronisierten Angriff wird die Zielzelle stark genug geschädigt“,sagt Professor Förster. Bei der durch mathematische Modelle unterstützten Auswertung arbeiteten die MHH-Forscher eng mit Wissenschaftlern des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig zusammen.

„Wir haben auch gesehen, dass Killer-T-Zellen in der Regel keine stabilen Interaktionen mit ihren Zielzellen eingehen, sondern sehr dynamisch und ständig in Bewegung sind. Dadurch können auch immer wieder neue Killer-T-Zellen eine bestimmte Zielzelle erreichen“, erläutert Dr. Halle.

Diese Ergebnisse werfen ein grundsätzlich neues Licht darauf, wie Killer-T-Zellen ihre Ziele im Organismus zerstören. Impfstrategien sollten somit zukünftig daraufhin optimiert werden, eine ausreichende Anzahl dieser hochbeweglichen und kooperativ angreifenden Killer-T-Zellen zu generieren.

Weitere Informationen erhalten Sie bei Dr. Stephan Halle, PhD: Telefon (0511) 532-9725, halle.stephan@mh-hannover.de, und Professor Dr. Reinhold Förster: Telefon (0511) 532-9721, foerster.reinhold@mh-hannover.de

Stefan Zorn | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-hannover.de

Weitere Berichte zu: HZI Immunologie Killer-T-Zellen T-Zellen Viren Zielzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics