Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum sind Kieselalgen so erfolgreich?

26.06.2009
Wissenschaftler des Alfred-Wegener-Instituts finden Hinweise in der Evolution dieser Algen

Kieselalgen (Diatomeen) spielen eine Schlüsselrolle für die Photosynthese in den Weltmeeren und werden deshalb intensiv untersucht. Wissenschaftler des Alfred-Wegener-Instituts für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft haben in internationaler Zusammenarbeit eine neue Entdeckung zur Evolution der Photosynthese in Diatomeen gemacht.

Bisher ging man davon aus, dass Diatomeen ihre Fähigkeit zur Photosynthese ausschließlich von Rotalgen geerbt haben. Die Molekularbiologen haben jetzt gezeigt, dass sich im Genom der Diatomeen erhebliche Mengen an Erbmaterial finden, das von Grünalgen abstammt. Die photosynthetischen Zellstrukturen der Diatomeen, vereinen somit Eigenschaften aus Rotalgen- und Grünalgenvorfahren, was ihren enormen Erfolg in den Weltmeeren erklären könnte.

Die Ergebnisse werden nun in der jüngsten Ausgabe der renommierten Fachzeitschrift "Science" vorgestellt.

Die Photosynthese, Basis allen Lebens auf der Erde, wird je etwa zur Hälfte auf dem Land und im Meer erbracht. An Land sind vor allem komplexe grüne Pflanzen dafür verantwortlich, in den Meeren die Algen und zwar vorwiegend einzellige Vertreter. Darunter stellen die Kieselalgen (Diatomeen) mit einem Anteil von etwa 40 Prozent die wichtigste Gruppe. Landpflanzen, Rot- und Grünalgen unterscheiden sich in ihrer evolutionären Geschichte grundsätzlich von den Diatomeen: Sie entstammen der Symbiose eines photosynthetischen Bakteriums (Cyanobakterium) mit einer höher entwickelten, farblosen Wirtszelle mit Zellkern (eukaryotische Zelle). Da dabei eine Zelle als Symbiont in einer anderen Zelle lebt, nennt man den Vorgang Endosymbiose. Im Ergebnis entstanden so die photosynthetischen Organellen in Pflanzen- und Algenzellen, die Plastiden oder Chloroplasten.

Auch Diatomeen besitzen Plastiden, doch diese entwickelten sich, in dem zwei höhere Zellen miteinander verschmolzen: Eine eukaryotische Wirtszelle nahm einen photosynthetischen Rotalgen-Einzeller auf. Bei dieser sekundären Endosymbiose entstehen so genannte sekundäre Plastiden. Bisher ging man davon aus, dass die aufnehmende Zelle farblos und nicht photosynthetisch war. "In einer internationalen Zusammenarbeit gelang es uns zu zeigen, dass die aufnehmende Wirtszelle bereits Chloroplasten besaß, die denen von Grünalgen ähneln. In den Genomen von zwei Diatomeen-Arten konnten wir Spuren dieser "kryptischen" Chloroplasten entdecken", erklärt Klaus Valentin, Wissenschaftler des Alfred-Wegener-Instituts für Polar- und Meeresforschung. Tatsächlich fänden sich in den Genomen sogar mehr Spuren des Grünalgen- als des Rotalgen-Vorfahren. Daraus könne man schließen, dass die Plastiden heutiger Diatomeen tatsächlich eine Mischform aus zwei Plastidentypen, denen aus Grünalgen und Rotalgen, darstellen. "Diatomeen verfügen dadurch wahrscheinlich über mehr stoffwechselphysiologisches Potenzial als jede der beiden Ausgangstypen einzeln, was den großen Erfolg der Diatomeen in den Meeren erklären könnte", so Valentin weiter. "Ihre Plastiden könnten quasi das "Beste beider Welten" vereinen."

Mittlerweile haben Valentin und sein Kollege Bànk Beszteri Spuren einer grünen Endosymbiose auch in anderen Meeresalgen entdeckt, die ähnlich wie Diatomeen ebenfalls aus einer sekundären Endosymbiose hervorgegangen sind. Dazu gehören beispielsweise die Braunalgen. "Unser nächstes Ziel ist es nun herauszufinden, welchen Vorteil diese Form der Symbiose den Meeresalgen genau gebracht hat. Wir wollen diesen Vorteil quantifizieren und die Stoffwechselwege identifizieren, die in Diatomeen zusätzlich vorhanden sind oder besser funktionieren als in Rot- oder Grünalgen alleine. Vielleicht können wir so verstehen, warum die Algen mit sekundären Plastiden in den Meeren so erfolgreich sind während an Land Pflanzen mit primären Plastiden das Rennen gemacht haben."

Der Originaltitel der Science-Veröffentlichung lautet:
"Genomic footprints of a cryptic plastid endosymbiosis in diatoms. During their evolution the dominant phytoplankters in the world's oceans sampled genes from both red and green algae." (Autoren: Ahmed Moustafa, Bánk Beszteri, Uwe G. Maier, Chris Bowler, Klaus Valentin, Debashish Bhattacharya)

Ihr Ansprechpartner im Alfred-Wegener-Institut ist Dr. Klaus Valentin, vormittags zu erreichen unter 0471 4831-1452, nachmittags unter 0173 3241067 (E-Mail: Klaus.Valentin@awi.de), sowie in der Presse- und Öffentlichkeitsarbeit Magdalena Hamm (Tel. 0471 4831-2008, E-Mail: medien@awi.de).

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 16 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Margarete Pauls | idw
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit