Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017

Eine vergleichende Genomanalyse des 60 Millionen Basen umfassenden Genoms der Kieselalge Fragillariopsis cylindrus liefert Anhaltspunkte, wie die Anpassung dieser Algen an extreme Umweltbedingungen ermöglicht wird und inwieweit der Klimawandel sich auf diese evolutionäre Anpassung auswirken könnte. Die Ergebnisse wurden jetzt in der renommierten Fachzeitschrift Nature veröffentlicht.

Ein internationales Team von Wissenschaftlern, darunter Forscher des U.S. Department of Energy Joint Genome Institute (DOE JGI), des Zoologischen Forschungsmuseum Alexander Koenig – Leibniz-Institut für Biodiversität der Tiere in Bonn, der Universität Essen-Duisburg, der Universität zu Köln sowie des Alfred-Wegener-Instituts – Helmholtz-Zentrum für Polar- und Meeresforschung fand unter der Koordination von Thomas Mock, Professor of Marine Microbiology, School of Environmental Sciences an der Universitiy of East Anglia in England, zwei Varianten für viele Gene im Genom der in der Antarktis vorkommenden Alge F. cylindrus.


Wenn Seegang im Südpolarmeer die Eisschollen in Stücke bricht und umkippt, kommt die braune Unterseite zum Vorschein. Dort beginnen sich im Frühjahr Kieselalgen wie Fragilariopsis stark zu vermehren und färben das Meereis braun, wie im abgebildeten etwa zwei Meter langen Eisstück. Foto: Dr. Thomas Mock, School of Environmental Sciences, University of East Anglia, Norwich, Großbritannien

Die Photos gehören zur Pressemitteilung "Alga of the Year" 2011”: Fragilariopsis cylindrus loves the extremes (Fragilariopsis cylindrus liebt die Extreme).

Die Nutzung ist nur mit einem Hinweis auf die Pressemitteilung „Alga oft the year 2011“ erlaubt. Außerdem müssen die Fotografen genannt werden und zwar folgendermaßen: Vorname, Nachname, Institution. Eine kommerzielle Nutzung ist nicht gestattet.

Je nach Umweltbedingungen (Polarwinter oder Polarsommer) exprimiert (aktiviert) diese Alge die eine oder andere Genvariante. Als Vergleichsorganismen dienten die Genome der Kieselalgen Thalassiosira pseudonana und Phaeodactylum tricornuteum mit je etwa 30 Millionen Basenpaaren. Diese beiden Arten kommen in Meeren gemäßigter Breiten vor. Weltweit bindet das Phytoplankton der Meere, darunter auch Kieselalgen, mehr als ein Drittel des Kohlenstoffs der Ozeane. Damit spielen diese Organismen eine große Rolle in der Kohlendioxidbilanz der Erde.

Im Polarwinter wird die Kieselalge F. cylindrus im polaren Eis eingeschlossen. Sie muss mit hohen Salzkonzentrationen, stark variierenden Eisen- und Kohlendioxidkonzentrationen, extrem niedrigen Temperaturen und zeitweise fast ohne Licht auskommen und vermehrt sich sogar unter diesen extremen Bedingungen noch, wenn auch in relativ geringem Umfang. Im Polarsommer, wenn das Winterpolareis verschwindet, werden die Algen aus dem Eis freigesetzt und vermehren sich unter dem Einfluss des Sonnenlichts stark. Sie dienen dem Krill als Nahrungsgrundlage. Die Alge bildet somit eine wichtige Grundlage für das Nahrungsangebot im Südpolarmeer.

Kieselalgen der Polarmeere trotzen dem extremen und variablen Lebensraum. Wie sie das schaffen, war bisher völlig unbekannt. „Unsere Daten geben einen ersten Einblick, wie diese Organismen als Basis eines der größten und einzigartigen Ökosysteme evolvierten“ erläutert Thomas Mock.

„Unsere Analysen haben gezeigt, dass nahezu ein Viertel des F. cylindrus Genoms hoch divergente Allele aufweist. Dies sind Varianten der gleichen Gene die durch die Akkumulation von Mutationen stark divergieren. Die gleichen Gene hat man als einzelne Allele auch in anderen Kieselalgenarten gefunden“ stellt Christoph Mayer vom ZFMK in Bonn dar. Und Igor Grigoriev, Leiter des Fungal Genomics Program am DOE Joint Genome Institute, ergänzt: „Es ist bemerkenswert, dass sich verschiedene Allele derselben Gene auseinander entwickeln haben, um es der Kieselalge zu erlauben auf verschiedene Umwelteinflüsse zu reagieren. Diese allelische Divergenz muss vor ca. 100.000 Jahren entstanden sein, was zeitlich mit dem Beginn der letzten Eiszeit zusammenfällt.“

„Die neue Erkenntnis, dass F. cylindrus Population eine hohe Variation ihres Erbguts aufweisen und diese über die Zeit erhalten, um in der Lage zu sein, sich den harten Umweltbedingungen anpassen zu können, hat weitreichende Auswirkungen für unser Verständnis dafür, wie natürliche Populationen auf sich ändernde Umweltbedingungen reagieren“ meint Jeremy Schmutz, Leiter des DOE JGI’s plant programs und ebenfalls Co-Autor der Studie. „Auf dem Level des Individuums die Möglichkeit zu haben, die Expression eines Haplotypen unter sich ändernden Umweltbedingungen von einer Kopie auf eine andere umzustellen, zeigt die vorhandene Komplexität der Überlebensmechanismen in der Natur. Im Falle von F. cylindrus scheint die hohe Variation zwischen den zwei Haplotypen wichtig für das Überleben und die Anpassungsfähigkeit der Art an die Umwelt zu sein. Dies wird sehr wahrscheinlich die genomischen Techniken und Analysen ändern, die zur Erforschung von eukaryotischen Arten der Lebensgemeinschaften in Ozeanen angewendet werden.“

Ein Bild der Alge in ihrem Lebensraum finden Sie hier:
http://dbg-phykologie.de/en/alga-of-the-year/alga-of-the-year-2011.html

Die Photos gehören zur Pressemitteilung "Alga of the Year" 2011”: Fragilariopsis cylindrus loves the extremes (Fragilariopsis cylindrus liebt die Extreme).

Copyright / Nutzung:
Die Nutzung ist nur mit einem Hinweis auf die Pressemitteilung „Alga oft the year 2011“ erlaubt. Außerdem müssen die Fotografen genannt werden und zwar folgendermaßen: Vorname, Nachname, Institution. Eine kommerzielle Nutzung ist nicht gestattet.

Quelle:
'Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus‘

http://dx.doi.org/10.1038/nature20803
DOI: 10.1038/nature20803

Ansprechpartner
Dr. Christoph Mayer
Sektionsleiter Statistische Phylogenetik und Phylogenomik am ZFMK
E-Mail-Adresse: c.mayer@zfmk.de
Tel: +49 228 9122- 403


Das Zoologische Forschungsmuseum Alexander Koenig - Leibniz-Institut für Biodiversität der Tiere hat einen Forschungsanteil von mehr als 75 %. Das ZFMK betreibt sammlungsbasierte Biodiversitätsforschung zur Systematik und Phylogenie, Biogeographie und Taxonomie der terrestrischen Fauna. Die Ausstellung „Unser blauer Planet“ trägt zum Verständnis von Biodiversität unter globalen Aspekten bei.

Die Leibniz-Gemeinschaft verbindet 91 selbständige Forschungseinrichtungen. Ihre Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute widmen sich gesellschaftlich, ökonomisch und ökologisch relevanten Fragen. Sie betreiben erkenntnis- und anwendungsorientierte Forschung, auch in den übergreifenden Leibniz-Forschungsverbünden, sind oder unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer, vor allem mit den Leibniz-Forschungsmuseen. Sie berät und informiert Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Einrichtungen pflegen enge Kooperationen mit den Hochschulen u.a. in Form der Leibniz-WissenschaftsCampi, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 18.600 Personen, darunter 9.500 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei mehr als 1,7 Milliarden Euro.

Sabine Heine | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.zfmk.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics