Kieler Forschende entdecken neuartiges Killerprotein

Das Modell zeigt, wie sich das aktivierte Einzelmolekül Acanthaporin (goldene dreidimensionale Struktur) zu einem Sechser-Ring in der Zielzellmembran zusammenschließt, der zum Austritt von Zellinhaltstoffen und schließlich zum Zelltod führt. Die Farbgebung auf der Oberfläche des Proteinkomplexes zeigt die unterschiedliche Ladungsverteilung der so entstandenen Membranpore (Blau: positive Ladung; rot: negative Ladung; weiss: ungeladen; roter Ring: Porenöffnung).<br><br>Copyright: Uni Kiel, Bild: Matthias Michalek<br>

Sie fanden heraus, dass dieses Eiweißmolekül anders aussieht als alles, was bisher in den Proteinstrukturdatenbanken zu finden war. Das von den Amöben abgesonderte Zellgift (Acanthaporin) schlägt Lecks in fremde Zellhüllen, wenn es aus seinem inaktiven Zustand geweckt wird und sich anschließend zu einer Art Ringkanal (Pore) innerhalb der Außenmembran von menschlichen Nervenzellen oder Bakterien zusammenlagern kann.

Ihre Entdeckung veröffentlichten die Wissenschaftlerinnen und Wissenschaftler in der aktuellen Ausgabe (11.11.2012) der Fachzeitschrift Nature Chemical Biology.

Acanthamöben sind freilebende Einzeller, die im Boden und in Gewässern vorkommen und sich von anderen Mikroorganismen ernähren. Einige Vertreter dieser Gattung können gefährliche Krankheiten beim Menschen auslösen. Die Parasiten können das zentrale Nervensystem befallen und schließlich zum Tod führen. Solche tragischen Fälle sind – verglichen mit den weitaus bekannteren Tropenkrankheiten wie Malaria oder Amöbenruhr, die auch durch parasitische Einzeller ausgelöst werden – relativ selten und betreffen vornehmlich Patientinnen und Patienten mit geschwächtem Immunsystem. Zunehmende medizinische Bedeutung bekommen die Acanthamöben als Auslöser einer schmerzhaften Hornhautentzündung des Auges (Amöbenkeratitis), die vor allem Kontaktlinsenträgerinnen und -träger auftreten kann und in manchen Fällen zur Erblindung führt. Darüber hinaus tragen die Acanthamöben nicht selten auch andere Krankheitskeime wie etwa den Erreger der Legionärskrankheit in ihrem Inneren, weshalb sie auch schon als „Trojanische Pferde“ bezeichnet wurden.

Die aktuellen Forschungsergebnisse entstanden in enger Zusammenarbeit zweier Kieler Forschungsteams um Professor Matthias Leippe (Zoophysiologie, Zoologisches Institut der CAU) und Professor Joachim Grötzinger (Strukturbiologie, Biochemisches Institut der CAU) und wurden in weiten Teilen durch den damaligen gemeinsamen Doktoranden Matthias Michalek erhoben. Als sich das Projekt ausweitete, wurden die Akteure von Forscherinnen und Forschern aus Kiel und dem Forschungszentrum Borstel unterstützt, mit denen sie im Exzellenzcluster „Entzündung an Grenzflächen“ schon seit Jahren zusammenarbeiten. Daneben wurden auch Fachleute aus dem Ausland hinzugezogen.

„Für Grundlagenforscher wie uns ist es ausgesprochen erfüllend, wenn wir ein so interessantes Protein nicht nur entdecken, sondern am Ende auch noch sehen, wie es genau aussieht. So können wir mehr über seine Wirkungsweise erfahren. Wenn es wie in diesem Falle eine völlig neue Struktur darstellt, ist es natürlich umso schöner. So etwas passiert heutzutage kaum noch“, sagt der Initiator der Studie, Matthias Leippe, und ergänzt: „Das Prinzip, lösliche Proteine auszuschütten, die sich anschließend in die Zielzellmembranen einbauen und dort Poren ausbilden, also dem Gegner ein Loch ins Kleid zu machen, ist allerdings nicht neu. Wir finden es bei bakteriellen Krankheitserregern genauso wie bei unserem eigenen Abwehrsystem. Daher sprechen wir gerne von ‚ancient weapons’ – ursprünglichen Waffen, die sehr schnell und sehr effektiv wirken und sich in der Natur seit Jahrmillionen für Angriff und Verteidigung bewährt haben.“

Die Forschenden hoffen nun, dass durch die neuen Erkenntnisse die rätselhaften Umstände, die zu Gewebeschäden und zur Entstehung der durch die Acanthamöben ausgelösten Krankheiten führen, besser verstanden werden können.

Originalartikel:
“Structure and function of a unique pore-forming protein from a pathogenic acanthamoeba”; DOI:10.1038/NChemBio.1116
Kontakt:
Prof. Dr. Matthias Leippe
Zoologisches Institut der Universität Kiel
Tel. 0431/880-4196
E-Mail: mleippe@zoologie.uni-kiel.de
Prof. Dr. Joachim Grötzinger
Biochemisches Institut der Universität Kiel
Tel. 0431/880-1686
E-Mail: jgroetzinger@biochem.uni-kiel.de

Media Contact

Dr. Boris Pawlowski idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer