Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kernspins elektrisch manipuliert

06.06.2014

Ein wichtiger Schritt auf dem Weg zum Quantencomputer ist Forschern des Karlsruher Instituts für Technologie (KIT) mit Partnern aus Frankreich gelungen

An einem Einzelmolekül-Magneten demonstrierten die Wissenschaftler, wie sich Kernspins mit elektrischen Feldern manipulieren lassen. Die elektrische Manipulation ermöglicht ein schnelles und gezieltes Schalten von Quantenbits. Über die Ergebnisse ihrer Experimente berichten die Wissenschaftler im Magazin Science. (DOI: 10.1126/science.1249802)


Einzelmolekül-Magnet, bestehend aus Metallion und kontaktierenden organischen Molekülen, zwischen Elektroden. Die Kernspinzustände (farbige Kreise) lassen sich elektrisch manipulieren und auslesen.

Abbildung: C. Grupe, KIT

Einen Quantencomputer zu verwirklichen, ist eines der ehrgeizigsten Ziele der Nanotechnologie. Ein solcher Computer, der auf quantenmechanischen Prinzipien basiert, soll Aufgaben wesentlich effizienter lösen als ein klassischer Computer: Während dieser mit Bits arbeitet, die den Wert Null oder Eins annehmen können, nutzt ein Quantencomputer als kleinste Recheneinheit sogenannte Quantenbits, kurz Qubits, bei denen es auch Werte dazwischen gibt.

Als Qubits eignen sich unter anderem Kernspins, das heißt Eigendrehimpulse von Atomkernen. Sie richten sich relativ zu einem Magnetfeld entweder nach oben (Up) oder nach unten (Down) aus. Durch Verschränkung von Qubits untereinander entstehen gemischte Quantenzustände, die es ermöglichen, viele Rechenschritte parallel auszuführen.

Um kernspinbasierte Qubits in elektronische Schaltungen zu integrieren und dort gezielt in neuartigen Informationsprozessen anzusteuern, ist es erforderlich, Kernspins gezielt elektrisch manipulieren zu können. Einer Gruppe von Wissenschaftlern des KIT und des Centre National de la Recherche Scientifique (CNRS) in Grenoble und Straßburg ist nun erstmals eine rein elektrische Manipulation eines einzelnen Kernspins gelungen.

„Der Einsatz von elektrischen anstelle von magnetischen Feldern bereitet den Weg zur Adressierung von Kernspinquantenzuständen in herkömmlichen elektronischen Schaltkreisen“, erklärt Professor Mario Ruben, Leiter der Forschungsgruppe Molekulare Materialien am Institut für Nanotechnologie (INT) des KIT. „Die gezielte Manipulation von Quantenzuständen kann dort durch sogenannte Verschiebungsströme erfolgen und anschließend direkt elektronisch ausgelesen werden.“

Für ihre Experimente setzten die Forscher einen Kernspin-Qubit-Transistor ein, bestehend aus einem Einzelmolekül-Magneten, der mit drei Elektroden (Source, Drain und Gate) verbunden ist.

Bei dem Einzelmolekül-Magnet handelt es sich um ein TbPc2-Molekül – ein einzelnes Metallion aus Terbium, umhüllt von organischen Phthalocyanin-Molekülen aus Kohlenstoff-, Stickstoff- und Wasserstoffatomen, wobei die organischen Liganden eine leitende Brücke zwischen Elektroden einerseits und dem Kernspin andererseits aufspannen.

Diese Brücke wird physikalisch vom sogenannten Hyperfein-Stark-Effekt geschlagen, der das elektrische Feld in ein lokales magnetisches Feld transformiert. Dieser quantenmechanische Prozess lässt sich auf alle Kernspinsysteme übertragen und eröffnet somit generell neuartige Perspektiven, die Quanteneffekte in elektronische Schaltkreise zu integrieren.

Stefan Thiele, Franck Balestro, Rafik Ballou, Svetlana Klyatskaya, Mario Ruben, Wolfgang Wernsdorfer: Electrically driven nuclear spin resonance in single-molecule magnets. Science 6 June 2014, Vol. 344, # 6188. DOI: 10.1126/science.1249802

Kosta Schinarakis
PKM – Themenscout
Tel.: +49 721 608 41956
Fax: +49 721 608 43658
E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Diese Presseinformation ist im Internet abrufbar unter: www.kit.edu

Das Foto steht in druckfähiger Qualität auf www.kit.edu zum Download bereit und kann angefordert werden unter: presse@kit.edu oder +49 721 608-47414. Die Verwendung des Bildes ist ausschließlich in dem oben genannten Zusammenhang gestattet.

Weitere Informationen:

http://www.kit.edu/kit/pi_2014_15234.php

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie

Erste "Rote Liste" gefährdeter Lebensräume in Europa

16.01.2017 | Ökologie Umwelt- Naturschutz