Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kernspin in Farbe

16.10.2014

Berliner Wissenschaftlern sind erstmals zweifarbige Aufnahmen mit hochempfindlichen neuen Kontrastmitteln im Kernspintomographen gelungen. Mit der neuartigen Technik lassen sich verschiedene Zellen unterschiedlich markieren. Das Verfahren eröffnet neue Perspektiven für die klinische Anwendung – Tumore ließen sich damit zum Beispiel genauer charakterisieren und somit Therapien individueller einsetzen.

Bei der Lichtmikroskopie ist es eine Selbstverständlichkeit: Mit einer Vielzahl von Farbstoffen färbt man Proben ein, kann so verschiedene Zellstrukturen sichtbar machen oder gesundes von krankem Gewebe unterscheiden.

Da Lichtstrahlen aber nicht weit in Gewebe eindringen, durchleuchten Ärzte ihre Patienten mit Radiowellen, wenn sie mit einem Kernspintomographen Aufnahmen machen. Der Nachteil dabei: Im Kernspin sieht man meist lediglich die Verteilung von Gewebswasser, besondere Zielstrukturen wie etwa kleine Mengen von Tumorzellen können die Ärzte in den schwarz-weißen Bildern nicht erkennen.

Das könnte sich einmal ändern, sollte sich die neue Technik der Xenon-Kernspintomographie durchsetzten, die derzeit von mehreren Arbeitsgruppen weltweit entwickelt wird. Der Gruppe um den Berliner Physiker Leif Schröder ist am Leibniz-Institut für Molekulare Pharmakologie (FMP) nun in Zusammenarbeit mit Christian Freund von der FU Berlin ein wichtiger Durchbruch gelungen.

Zum ersten Mal konnten die Berliner Wissenschaftler verschiedene Zelltypen so markieren, dass diese Radiowellen unterschiedlicher Frequenz aussenden. Ganz wie bei der Lichtmikroskopie generierten sie so Bilder, auf denen manche Zellen rot, andere grün leuchten.

Kernspinaufnahmen kommen zustande, wenn Atomkerne mit einem starken äußeren Magnetfeld in Wechselwirkung treten – der Patient wird dafür „in die Röhre geschoben“, welche den starken Magneten beinhaltet. In diesem Zustand treten manche Atomkerne mit Radiowellen in Resonanz, d.h. sie senden selbst Radiowellen aus, und durch schichtweise Aufnahmen entsteht ein dreidimensionales Bild. (Das Verfahren wird daher auch „Magnetresonanztomographie“, kurz MRT genannt.)

Herkömmliche Kernspintomographen vermessen dabei die Kerne von Wasserstoffatomen, die im menschlichen Körper zwar allgegenwärtig sind, aber nur sehr schwache Signale aussenden. Die neue, von Leif Schröder entwickelte Technik nutzt dagegen das Edelgas Xenon, das weit stärkere Signale aussendet, wenn man seine Atomkerne zuvor mittels Laserstrahlen in einen „hyperpolarisierten“ Zustand versetzt. Das Gas, sonst eher aus Autoscheinwerfern bekannt, ist harmlos und völlig ungiftig. Bei einer klinischen Anwendung könnten es die Patienten inhalieren und so im Körper verteilen.

Für wirklich interessante Aufnahmen müsste man allerdings mit dem Edelgas besondere Zielstrukturen markieren – etwa krankhaft entartete Zellen oder auch Ablagerungen in den Arterien. Die Berliner Forscher haben dafür verschiedene molekulare „Container“ entwickelt, die das Xenon einfangen, und die sich wiederum leicht als Sonden im menschlichen Körper einsetzen lassen.

Heftet sich ein solches Kontrastmittel an eine gesuchte Zelle im Körper, dann fischt es fortan Xenonatome aus der Umgebung, die von dort Radiowellen einer bestimmten Frequenz ausstrahlen. In der aktuellen Arbeit setzten die Berliner Forscher zwei unterschiedliche Container gleichzeitig ein, durch die das Xenon dann Radiowellen mit unterschiedlicher Frequenz aussendet – manche Zellen sahen im Bild dadurch grün, andere rot aus.

Die Arbeit wurde im renommierten Fachjournal Nano Letters veröffentlicht und kürzlich auf dem World Molecular Imaging Congress vorgestellt. „Stefan Klippel als federführender Doktorand ist dort für diese Arbeiten mit einem Stipendium ausgezeichnet worden“, berichtet Leif Schröder erfreut. Die Möglichkeit eines Anfärbens von Zellen für mehrfarbige Kernspinaufnahmen wird schon länger propagiert, scheiterte aber bislang an der zu geringen Empfindlichkeit der Technik.

„Wir haben durch unsere jahrelange Entwicklungsarbeit die nötige Sensitivität erreicht und können nun verschiedene Kontrastmittel und Anwendungsmöglichkeiten testen“, sagt Leif Schröder. Eines der beiden in dem Versuch verwendeten Kontrastmittel ist bereits klinisch erprobt, da es auch bei Ultraschall-Diagnostik eingesetzt wird.

Für die neue Art der Kernspintomographie ist eine Vielzahl künftiger Anwendungsmöglichkeiten denkbar. Zum Beispiel ließen sich damit in den Körper transplantierte Zellen verfolgen oder Tumore lokalisieren und in ihrer zellulären Zusammensetzung darstellen. Auf diese Weise könnten die neuartigen Kernspin-Aufnahmen zu einer personalisierten Therapie beitragen.

Nano Letters, DOI: 10.1021/nl502498w, online erschienen am 23. 9. 2014

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Kontakt:
Dr. Leif Schröder
Leibniz-Institut für Molekulare Pharmakologie (FMP)
lschroeder (at) fmp-berlin.de
Tel.: 0049 30 94793-121

Silke Oßwald
Öffentlichkeitsarbeit
Leibniz-Institut für Molekulare Pharmakologie (FMP)
osswald (at) fmp-berlin.de
Tel.: 0049 30 94793-104

Silke Oßwald | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fmp-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau