Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keratine machen Zellen steif

29.10.2013
Forschergruppe weist erstmals Funktion einer ganzen Proteingruppe nach

Seit Jahren hatten es Wissenschaftler vermutet, nun haben es Forscher aus Jülich, Leipzig und Aachen erstmals nachgewiesen: Keratine, eine wichtige Gruppe von Strukturproteinen, sorgen dafür, dass Zellen über die nötige Stabilität verfügen.


Rasterkraftmikroskopie-Aufnahme einer KeratinozyteRasterkraftmikroskopie-Aufnahme einer Keratinozyte: Die Erhebung in der Mitte des Bildes ist der Bereich des Zellkerns, oben und unten im Bild sind Zellausläufer sichtbar. Diese Zellen sind der häufigste Zelltyp der menschlichen Oberhaut. Mit einem Rasterkraftmikroskop können Oberflächen mechanisch abgetastet und atomare Kräfte im Nanometerbereich gemessen werden. Die Jülicher Forscher haben damit solche Aufnahmen gemacht sowie die Steifigkeit von normalen und genmanipulierten Keratinozyten ermittelt.
Quelle: Forschungszentrum Jülich


Immunfluoreszenzmikroskopie-Aufnahmen einer unveränderten Keratinozyte: Bei dieser Form der Lichtmikroskopie können zu untersuchende Strukturen mit hohem Kontrast dargestellt werden. Der dunkle Bereich in der Mitte ist der Zellkern, der von einem hellgrünen Ring von Keratinen umgeben wird. Bei den genveränderten Zellen würde der hellgrüne Bereich fehlen. Der äußere, rote Bereich besteht aus einem Netz des Strukturproteins Aktin.
Quelle: Forschungszentrum Jülich

Dadurch erhält etwa Haut, aber auch Drüsengewebe die erforderliche Festigkeit und Spannkraft. Die Wissenschaftler haben dazu genetisch veränderte Zellen der Oberhaut, sogenannte Keratinozyten, aus Embryonen der Maus gewonnen und untersucht.

Die Ergebnisse sind jetzt in der renommierten Zeitschrift "Proceedings of the National Academy of Sciences of the United States of America" (PNAS) erschienen. Die neuen Erkenntnisse könnten helfen, genetisch bedingte Hautkrankheiten wie Epidermolysis bullosa, auch als Schmetterlingskrankheit bekannt, zu erklären.

Was Zellen stabil macht beziehungsweise gegen mechanische Beanspruchung schützt, ist eine der aktuellen Schlüsselfragen in der Zellbiologie. "Es steht zwar in jedem Lehrbuch, dass Keratine Zellen steif machen, aber eben mit dem Hinweis, dass dies vermutet wird. Bislang gab es nur sehr wenige Messdaten und noch keinen eindeutigen Nachweis", erklärt Prof. Rudolf Merkel vom Institute of Complex Systems am Forschungszentrum Jülich, Co-Autor der Studie. Der Nachweis war bislang schwierig, da Keratin nicht ein einziges Protein ist, sondern eine ganze Proteinfamilie. Dem Team um Prof. Thomas Magin vom Translationszentrum für Regenerative Medizin und dem Institut für Biologie der Universität Leipzig ist es gelungen, Keratinozyten von Maus-Embryonen genetisch so zu verändern, dass keine Keratine darin vorkommen. Normalerweise bestehen bis zu zwei Drittel der Proteinmasse von Keratinozyten aus diesen Strukturproteinen.

Die Jülicher Experten für zelluläre Biomechanik haben die Steifigkeit der genveränderten Zellen mithilfe der Rasterkraftmikroskopie gemessen. Dabei wird mit einer weichen Feder auf die Zelle gedrückt. Die Forscher messen jeweils die Kraft, die benötigt wird, um die Zelle bis zu einer bestimmten Tiefe einzudrücken. Das Ergebnis: Bei den genveränderten Keratinozyten reichten 30 bis 40 Prozent weniger Krafteinsatz, um die gleichen Resultate wie bei unveränderten Zellen zu erzielen. „Daran sieht man, dass die Zelle viel weicher ist und mechanischer Beanspruchung deutlich schlechter widersteht“, erläutert der Jülicher Forscher Dr. Bernd Hoffmann, der zusammen mit Prof. Merkel federführend an der Studie beteiligt ist. Überrascht hat die Wissenschaftler, dass sie die Unterschiede nicht nur bei Zellverbänden, sondern schon auf der Ebene der einzelnen Zelle festgestellt haben. Offensichtlich wirken Keratine schon früher und nicht erst, wenn sich Zellschichten bilden.

Weitere Untersuchungen der Arbeitsgruppe von Prof. Rudolf Leube vom Institut für Molekulare und Zelluläre Anatomie der RWTH Aachen zeigten außerdem, dass die innere Stabilität der genetisch veränderten Zellen deutlich geringer ist. Dazu fügten sie kleine magnetische Kugeln in die Zellen ein und bewegten diese dann mithilfe eines Elektromagneten. Bei unveränderten Keratinozyten rutschte die Kugel wieder in ihre Ausgangsposition zurück, wenn der Magnet ausgeschaltet wurde. Bei den veränderten Zellen blieb die Kugel an der Position, in die sie der Magnet gezogen hatte, und wurde schließlich sogar komplett aus der Zelle gerissen.

Die Ergebnisse sind ein wichtiger Fortschritt für die Forschung. Eine Reihe von Krankheiten beim Menschen hängen mit der Proteingruppe der Keratine zusammen und werden vermutlich durch die schlechtere mechanische Stabilität der Zellen hervorgerufen. Der Nachweis der Funktionalität von Keratinen könnte eine Erklärung liefern. Ein Beispiel ist die genetisch bedingte Hautkrankheit Epidermolysis bullosa, die sogenannte Schmetterlingskrankheit. Dabei führt eine angeborene Mutation in bestimmten Genen schon im Kleinkindalter zu Blasen und Wunden am und im ganzen Körper. Die Krankheit kann zu schweren Behinderungen oder gar zum frühzeitigen Tod führen.

Keratine sind nicht nur bei der Haut, sondern bei allen Trennschichten im Körpergewebe wichtig – beispielsweise auch bei äußeren Schichten von Drüsengeweben, etwa bei der Bauspeicheldrüse. Die äußeren Schichten schützen die inneren, sehr weichen Drüsenzellen. Dabei sind sie mitunter kräftigen mechanischen Beanspruchungen, etwa durch Bewegung oder Stöße, ausgesetzt. Nachdem die Wissenschaftler sich bislang nur einzelne Zellen angeschaut haben, werden sie nun komplette Gewebe untersuchen. Dabei wollen sie herausfinden, welche zusätzlichen oder verstärkten Effekte Keratine auf die Mechanik von Geweben ausüben.

Originalveröffentlichung:

Keratins as the main component for the mechanical integrity of keratinocytes. Lena Ramms Gloria Fabris, Reinhard Windoffer, Nicole Schwarz, Ronald Springer, Chen Zhou, Jaroslav Lazar, Simone Stiefel, Nils Hersch, Uwe Schnakenberg, Thomas M. Magin, Rudolf E. Leube, Rudolf Merkel, and Bernd Hoffmann.
Proceedings of the National Academy of Sciences of the United States of America (PNAS), Oktober 2013.

www.pnas.org/cgi/doi/10.1073/pnas.1313491110

Weitere Informationen:

Institute of Complex Systems, Bereich Biomechanik (ICS-7)
http://www.fz-juelich.de/ics/ics-7/DE/Home/home_node.html;
jsessionid=4916C617F6B3F1368B645EDB1A83B8BE
Ansprechpartner:
Prof. Rudolf Merkel
Institute of Complex Systems, Bereich Biomechanik (ICS-7)
Tel.: 02461 61-4551
r.merkel@fz-juelich.de
Dr. Bernd Hoffmann
Institute of Complex Systems, Bereich Biomechanik (ICS-7)
Tel.: 02461 61-6734
b.hoffmann@fz-juelich.de
Pressekontakt:
Erhard Zeiss, Pressereferent
Tel. 02461 61-1841
e.zeiss@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie