Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keine stille Post im Gehirn: Kommunikation zwischen Nervenzellen effektiver als gedacht

29.01.2010
Erkenntnisse Tübinger Neurowissenschaftler werfen neues Licht auf die Informationsverarbeitung im Gehirn

Ich höre quietschende Reifen, sehe im Augenwinkel ein Auto näherkommen - und springe schnell zurück auf den Gehweg. Dass ich mit heiler Haut davon gekommen bin, verdanke ich den Millionen von Nervenzellen, die in meinem Gehirn die verschiedenen Informationen verarbeiten und in adäquate Handlungsanweisungen umsetzen.

Die Kommunikation zwischen den Neuronen erfolgt dabei über kleine Spannungsimpulse, die Aktionspotentiale. Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik haben zusammen mit Kollegen vom Baylor College of Medicine (USA) gezeigt, dass die benachbarten Nervenzellen weniger stark korreliert sind.

Dies könnte implizieren, dass die Informationsverarbeitung deutlich effizienter ist als bislang vermutet. Somit ist eine geringere Anzahl an Neuronen notwendig, um große Datenmengen zu verarbeiten (Science, 28. Januar 2010).

"Wir müssen verstehen, wie ein gesundes Gehirn funktioniert, wenn wir Menschen mit Fehlfunktionen helfen wollen, wie sie beispielsweise bei Autismus auftreten", sagte Andreas Tolias, Neurowissenschaftler am Baylor College für Medizin, USA, und einer der Hauptautoren der Studie.

Das Gehirn ist die Schaltzentrale unseres Körpers, der Ort wo alle Informationen zusammengeführt werden. Es verarbeitet die unterschiedlichsten Eindrücke und koordiniert alle Bewegungen. Die Kommunikation zwischen den einzelnen Nervenzellen erfolgt dabei auf verschiedenen hierarchischen Ebenen. Wenn wir beispielsweise mit den Augen etwas wahrnehmen, so wird diese Information nacheinander in etwa zwölf verschiedenen Regionen des visuellen Kortex verarbeitet. Die Weiterleitung der Signale von Zelle zu Zelle erfolgt dabei über elektrische Signale, die Aktionspotentiale.

Die Wissenschaftler können diese Informationsleitung hörbar machen, da die einzelnen Nervenzellen "feuern", wenn sie aktiv sind. Zeigt man einer Versuchsperson immer das gleiche Bild mehrmals hintereinander, so klingt die Feuerrate jedoch jedes Mal anders. Ein Teil der Nervenzellaktivität ist also unabhängig vom visuellen Reiz. Bislang wurde vermutet, dass diese reizunabhängigen Aktionspotentiale bei benachbarten Nervenzellen aufgrund der engen Verknüpfung oft zu gleichen Zeiten auftreten. Dies wäre allerdings problematisch: Je stärker die Zellen korreliert sind, desto stärker wird das reizunabhängige Signal und desto schwieriger wird es für das Gehirn, zwischen relevanter und irrelevanter Information zu unterscheiden.

"Wir haben eine Methode entwickelt, mit der wir Aktionspotentiale noch präziser messen können", sagte Alexander Ecker, Doktorand am Max-Planck-Institut für biologische Kybernetik und Erstautor der Studie. Die Wissenschaftler haben trainierten Rhesusaffen verschiedene Bilder gezeigt, und gleichzeitig die Aktivität mehrerer, beieinander liegender Nervenzellen gemessen. Durch die neue Kombination von Messtechnik und Versuchsaufbau gelang dem deutsch-amerikanischen Wissenschaftlerteam der Nachweis, dass dicht beieinander liegende Nervenzellen unabhängig voneinander reagieren.

"Unsere Ergebnisse legen nahe, dass die Verschaltung von Neuronen im Gehirn so organisiert ist, dass deren Aktivitäten dekorreliert werden", sagt Alexander Ecker. Das heißt, obwohl alle Nervenzellen die gleichen Informationen bekommen, setzt jede Nervenzelle diese anders um und leitet sie weiter. Jede Nervenzelle macht das Gleiche, aber nicht jede Nervenzelle macht es auf die gleiche Art und Weise. Erst durch die vielen unterschiedlichen Einzelhandlungen ergibt sich ein einheitliches Ganzes. Möglicherweise dient dieser Mechanismus dazu, das Zusammenspiel zwischen den Nervenzellen bei der Signalverarbeitung zu verbessern und zu vereinfachen. "Die Informationsverarbeitung im Gehirn ist viel einfacher, wenn die Nervenzellenaktivität nicht korreliert ist. Wenn eine Hierarchieebene wissen will, was die andere tut, muss sie nicht erst Korrelationen herausrechnen", sagte Andreas Tolias. Daher sind weniger Nervenzellen als bislang angenommen nötig, um große Datenmengen zu verarbeiten.

"Unsere Erkenntnisse werfen ein neues Licht auf die bisherigen Modelle des Hirnrindenaufbaus. Wenn wir wissen, wie das gesunde Gehirn funktioniert, können wir in Zukunft auch das Gehirn von Epileptikern oder Autisten besser verstehen", hofft Neurowissenschaftler Ecker.

Originalveröffentlichung

Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N.K., Tolias, A.S. (2009)
Decorrelated Neuronal Firing in Cortical Microciruits
Science, 28. Januar 2010
Kontakt
Alexander Ecker und Prof. Dr. Andreas Tolias
Tel.: 001 713 798 4071
E-Mail: alexander.ecker@tuebingen.mpg.de
Philipp Berens
Tel: 07071 601-1775
E-Mail: philipp.berens@tuebingen.mpg.de
Prof. Dr. Matthias Bethge
Tel.: 07071 601-1770
E-Mail: mbethge@tuebingen.mpg.de
Dr. Susanne Diederich (Presse- & Öffentlichkeitsarbeit)
Tel.: 07071 601-333
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Susanne Diederich | idw
Weitere Informationen:
http://www.kyb.tuebingen.mpg.de/bethge/index.php
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie