Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keine stille Post im Gehirn: Kommunikation zwischen Nervenzellen effektiver als gedacht

29.01.2010
Erkenntnisse Tübinger Neurowissenschaftler werfen neues Licht auf die Informationsverarbeitung im Gehirn

Ich höre quietschende Reifen, sehe im Augenwinkel ein Auto näherkommen - und springe schnell zurück auf den Gehweg. Dass ich mit heiler Haut davon gekommen bin, verdanke ich den Millionen von Nervenzellen, die in meinem Gehirn die verschiedenen Informationen verarbeiten und in adäquate Handlungsanweisungen umsetzen.

Die Kommunikation zwischen den Neuronen erfolgt dabei über kleine Spannungsimpulse, die Aktionspotentiale. Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik haben zusammen mit Kollegen vom Baylor College of Medicine (USA) gezeigt, dass die benachbarten Nervenzellen weniger stark korreliert sind.

Dies könnte implizieren, dass die Informationsverarbeitung deutlich effizienter ist als bislang vermutet. Somit ist eine geringere Anzahl an Neuronen notwendig, um große Datenmengen zu verarbeiten (Science, 28. Januar 2010).

"Wir müssen verstehen, wie ein gesundes Gehirn funktioniert, wenn wir Menschen mit Fehlfunktionen helfen wollen, wie sie beispielsweise bei Autismus auftreten", sagte Andreas Tolias, Neurowissenschaftler am Baylor College für Medizin, USA, und einer der Hauptautoren der Studie.

Das Gehirn ist die Schaltzentrale unseres Körpers, der Ort wo alle Informationen zusammengeführt werden. Es verarbeitet die unterschiedlichsten Eindrücke und koordiniert alle Bewegungen. Die Kommunikation zwischen den einzelnen Nervenzellen erfolgt dabei auf verschiedenen hierarchischen Ebenen. Wenn wir beispielsweise mit den Augen etwas wahrnehmen, so wird diese Information nacheinander in etwa zwölf verschiedenen Regionen des visuellen Kortex verarbeitet. Die Weiterleitung der Signale von Zelle zu Zelle erfolgt dabei über elektrische Signale, die Aktionspotentiale.

Die Wissenschaftler können diese Informationsleitung hörbar machen, da die einzelnen Nervenzellen "feuern", wenn sie aktiv sind. Zeigt man einer Versuchsperson immer das gleiche Bild mehrmals hintereinander, so klingt die Feuerrate jedoch jedes Mal anders. Ein Teil der Nervenzellaktivität ist also unabhängig vom visuellen Reiz. Bislang wurde vermutet, dass diese reizunabhängigen Aktionspotentiale bei benachbarten Nervenzellen aufgrund der engen Verknüpfung oft zu gleichen Zeiten auftreten. Dies wäre allerdings problematisch: Je stärker die Zellen korreliert sind, desto stärker wird das reizunabhängige Signal und desto schwieriger wird es für das Gehirn, zwischen relevanter und irrelevanter Information zu unterscheiden.

"Wir haben eine Methode entwickelt, mit der wir Aktionspotentiale noch präziser messen können", sagte Alexander Ecker, Doktorand am Max-Planck-Institut für biologische Kybernetik und Erstautor der Studie. Die Wissenschaftler haben trainierten Rhesusaffen verschiedene Bilder gezeigt, und gleichzeitig die Aktivität mehrerer, beieinander liegender Nervenzellen gemessen. Durch die neue Kombination von Messtechnik und Versuchsaufbau gelang dem deutsch-amerikanischen Wissenschaftlerteam der Nachweis, dass dicht beieinander liegende Nervenzellen unabhängig voneinander reagieren.

"Unsere Ergebnisse legen nahe, dass die Verschaltung von Neuronen im Gehirn so organisiert ist, dass deren Aktivitäten dekorreliert werden", sagt Alexander Ecker. Das heißt, obwohl alle Nervenzellen die gleichen Informationen bekommen, setzt jede Nervenzelle diese anders um und leitet sie weiter. Jede Nervenzelle macht das Gleiche, aber nicht jede Nervenzelle macht es auf die gleiche Art und Weise. Erst durch die vielen unterschiedlichen Einzelhandlungen ergibt sich ein einheitliches Ganzes. Möglicherweise dient dieser Mechanismus dazu, das Zusammenspiel zwischen den Nervenzellen bei der Signalverarbeitung zu verbessern und zu vereinfachen. "Die Informationsverarbeitung im Gehirn ist viel einfacher, wenn die Nervenzellenaktivität nicht korreliert ist. Wenn eine Hierarchieebene wissen will, was die andere tut, muss sie nicht erst Korrelationen herausrechnen", sagte Andreas Tolias. Daher sind weniger Nervenzellen als bislang angenommen nötig, um große Datenmengen zu verarbeiten.

"Unsere Erkenntnisse werfen ein neues Licht auf die bisherigen Modelle des Hirnrindenaufbaus. Wenn wir wissen, wie das gesunde Gehirn funktioniert, können wir in Zukunft auch das Gehirn von Epileptikern oder Autisten besser verstehen", hofft Neurowissenschaftler Ecker.

Originalveröffentlichung

Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N.K., Tolias, A.S. (2009)
Decorrelated Neuronal Firing in Cortical Microciruits
Science, 28. Januar 2010
Kontakt
Alexander Ecker und Prof. Dr. Andreas Tolias
Tel.: 001 713 798 4071
E-Mail: alexander.ecker@tuebingen.mpg.de
Philipp Berens
Tel: 07071 601-1775
E-Mail: philipp.berens@tuebingen.mpg.de
Prof. Dr. Matthias Bethge
Tel.: 07071 601-1770
E-Mail: mbethge@tuebingen.mpg.de
Dr. Susanne Diederich (Presse- & Öffentlichkeitsarbeit)
Tel.: 07071 601-333
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Susanne Diederich | idw
Weitere Informationen:
http://www.kyb.tuebingen.mpg.de/bethge/index.php
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie