Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keine Entspannung für Krebszellen

28.05.2010
Viele Tumorzellen wären aufgrund fehlerhaft verteilter Chromosomen nicht lebensfähig, hätten sie nicht einen besonderen Trick entwickelt.

Unter Federführung des Deutschen Krebsforschungszentrums untersuchten Forscher, welche Erbanlagen dem Krebs diese Überlebensstrategie ermöglichen. Dazu schalteten sie systematisch jedes Gen der Krebszellen einzeln aus. Die Forscher zeigten nun, dass Krebszellen auf die Spannung bestimmter Proteinfasern angewiesen sind, um sich vermehren zu können. Proteine, die diese Spannung aufrecht erhalten, sind somit vielversprechende Angriffspunkte für neue, zielgerichtete Krebsmedikamente: Werden sie ausgeschaltet, sterben die Krebszellen ab.

Gemeinsame Pressemitteilung des Deutschen Krebsforschungszentrums und des Universitätsklinikums Heidelberg

Für den korrekten Ablauf einer Zellteilung sind die beiden Zentrosomen verantwortlich: An diesen Polkörperchen im Zellplasma setzen Zugfasern aus Proteinen an, die den frisch verdoppelten Chromosomensatz korrekt auf die beiden neu entstehenden Tochterzellen aufteilen. Unter dem Mikroskop betrachtet bilden diese Fasern dabei ein spindelförmiges Gebilde. Krebszellen haben jedoch häufig mehr als zwei Zentrosomen. Das hat zur Folge, dass ihre Zugfasern nicht notwendigerweise die normale – also spindelförmige – Gestalt mit zwei Enden ausbilden, sondern dass sich auch funktionsunfähige, mehrpolige Gebilde entwickeln. Diese missgebildeten Spindeln verteilen die Chromosomen völlig ungleichmäßig auf die Tochterzellen, die dann nicht mehr lebensfähig sind.

Tumorzellen überleben also nur dann, wenn ihnen trotz überzähliger Zentrosomen eine korrekte Verteilung der Chromosomen gelingt. Dazu haben viele Krebszellen einen Trick entwickelt: Sie bündeln mehrere Zentrosomen zu Aggregaten zusammen. Pro Zelle entstehen zwei Aggregate, zwischen denen sich eine funktionsfähige zweipolige Spindel ausbilden kann. Professor Dr. Alwin Krämer, Leiter einer Klinischen Kooperationseinheit des Deutschen Krebsforschungszentrums (DKFZ) und des Universitätsklinikums Heidelberg, erkannte diesen Trick als bislang kaum beachtete Achillesferse, um Krebszellen außer Gefecht zu setzen. Gemeinsam mit Kollegen aus dem DKFZ, dem Universitätsklinikum Heidelberg, der Medizinischen Fakultät Mannheim sowie der Mayo-Klinik in den USA untersuchte er systematisch, welche Gene die Krebszelle in die Lage versetzen, Zentrosomen-Aggregate zu bilden und damit dem Zelltod zu entgehen.

Dazu schalteten die Forscher mit Unterstützung der Abteilung von Professor Dr. Michael Boutros, DKFZ und Medizinische Fakultät Mannheim, jedes einzelne Gen der Krebszellen aus. Anschließend fahndeten sie unter dem Mikroskop, wo sich mehrpolige, missgebildete Spindeln zeigten. Insgesamt fanden sich 82 Gene, die bei der Bildung von Zentrosomen-Aggregaten eine Rolle spielen. 22 davon nahm das Team genauer unter die Lupe und untersuchte, welche Rolle sie bei der Aggregatbildung spielen. Dabei entdeckten die Wissenschaftler einen zentralen Mechanismus: Damit die Zentrosomen zu Aggregaten gebündelt werden können, müssen die Zugfasern unter Spannung stehen. Nur straff gespannte Zugfasern positionieren die Zentrosomen nahe genug beieinander, dass sich Aggregate bilden können. Für die Spannung sind einen ganze Reihe von Proteinen verantwortlich. Werden deren Gene ausgeschaltet, bilden sich mehrpolige Spindeln, und die Krebszellen sterben ab. Dieser Mechanismus lässt sich möglicherweise für die Entwicklung neuer Krebstherapeutika ausnutzen.

„Eine solche Therapie würde ganz gezielt den Krebs treffen, da nur Tumorzellen überzählige Zentrosomen haben und deshalb auf den Überlebenstrick der Aggregatbildung angewiesen sind“, erklärt der Studienleiter Alwin Krämer. Im Rahmen der strategischen Allianz des Deutschen Krebsforschungszentrums mit der Firma Bayer-Schering wollen die Forscher um Krämer nun unter den identifizierten Genen nach geeigneten Angriffspunkten für eine zielgerichtete Krebstherapie suchen.

Blanka Leber, Bettina Maier, Florian Fuchs, Jing Chi, Phillip Riffel, Simon Anderhub, Ludmila Wagner, Anthony D. Ho, Jeffrey L. Salisbury, Michael Boutros und Alwin Krämer: Proteins Required for Centrosome Clustering in Cancer Cells. Science Translational Medicine, 2010, DOI: 10.1126/scitranslmed.3000915

Ein Bild zur Pressemitteilung steht im Internet zur Verfügung unter:
http://www.dkfz.de/de/presse/pressemitteilungen/2010/images/PM_30_Kraemer.jpg
Bildunterschrift: Mehrpolige, missgebildete Spindel einer Krebszelle
Bildquelle: Deutsches Krebsforschungszentrum
Diese Pressemitteilung ist abrufbar unter www.dkfz.de/pressemitteilungen.
Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2854
F: +49 6221 42 2968
presse@dkfz.de
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs@med.uni-heidelberg.de

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie